
ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

1

The ProductNAME Project

Software Design Document

Version 2.1.5

 Prepared By Reviewed by Approved By

Name SolovatSoft

Client Team

Rafael Soultanov,

Andrey Belyaev

ClientName

Role Team Leader/

Team Member

Project Leader/ Team

Leader/ Team Member

Client

Signature

Date

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

2

Revision History

Version Revision Date Description

2.0.1 21-Nov-2007 Added MSMQ proposal.

Added old configuration files migration proposal

Added COB table setup form

2.0.2 22-Nov-2007 Added functional description of Event Handling Subsystem

Added class description of Event Handling Subsystem

Core UML diagram and class description updаted. EvensSource

classes are deleted.

It looks like we don’t need additional plug-in classes that will

implement EventSource interface to generate events described

above (can be found in previous versions of the document). We

can save and extract event source as an attribute of the event and

process it in suitable Event Handler. Method getEventSource will

return instance of an object that generated the Event. E.g.

getEventSource() method called from SYSTEM Event instance

will return an instance of SYSTEM class that generated the

Event.

2.0.3 24-Nov-2007 SYSTEM Core class deleted.

Carryable interface added.

Class relations reviewed.

Factory Layout class renamed to Factory

Added properties and methods for classes Factory, Route,

Segment, Station, SYSTEM

Core UML Diagram updated and class description added.

2.0.4 28-Nov-2007 Plug-in mechanism description added

Core API interfaces added

2.0.5 29-Nov-2007 Pathfinding algorithm description added

Class Command renamed to Waypoint

2.0.6 30-Nov-2007 Error handling algorithm description added

Object model related to pathfinding reviewed and redesigned

Class description for classes related to pathfinding added

2.0.7 01-Dec-2007 Added explanation of pathfindin algorithm selection

2.0.8 06-Dec-2007 Added new version of station setup form

2.0.9 09-Dec-2007 Minor changes performed in UI section. ―Close‖ buttons on forms

has been removed

2.1.0 12-Dec-2007 UI description changed. All UI windows was divided to dialogs

(modal) and forms. Main form design and layout concepts was

changed.

2.1.1 21-Dec-2007 Added method ―FindPlugins‖ to EventDispatcher class.

Added Event class description.

Added Methods GetXXXByID to IFactory and Iroute interfaces

Added methods related to Station manipulation to route

interface

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

3

Version Revision Date Description

Changed method name from ―StartMoving‖ to ―Start‖ in

ISYSTEM interface

Added Incoming and Outgoing segment manipulation to the

IStation interface

Added data exchange algorithm description to chapter ―Plug-in

module mechanism‖.

2.1.2 27-Dec-2007 Hardware and software requirements added

2.1.3 28-Dec-2007 Radio system module diagram added

2.1.4 29-Dec-2007 Rockwell Press System Diagram added

Inventory System Diagram added

2.1.5 17-Jan-2008 Deleted ―Security Architecture‖ chapter

Radio Interface Module functional specification rewritten

Radio Interface Module UML diagram redesigned

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

4

Table of Contents
Revision History .. 2
Table of Contents .. 4
Overall Software Architecture ... 6

Core Architecture Overview .. 7

Event Handling Subsystem .. 7
Factory Layout Subsystem .. 7
SYSTEM Handling Subsystem .. 7

External Modules Overview .. 7
Press Subsystem .. 7

External Data sources Subsystem .. 8
Rockwell Press System Query Interface ... 8

Abitrol Query Interface ... 8
Inventory Query Interface ... 8
Radio Interface Module ... 8

System Requirements .. 9

Operating System Requirements ... 9
Client ... 9
Server ... 9

Hardware Requirements .. 9
Client ... 9

Server ... 10
Additional Software Requirements ... 10

Client ... 10

Server ... 10

Additional System Requirements .. 10
Functional Specification .. 11

System Core ... 11

Event Handling Subsystem .. 12
Factory Layout Subsystem .. 18

The SYSTEM Handling Subsystem ... 20
Optimal Path Finding Algorithm ... 22

Radio Interface Module ... 26

List of Requirements ... 26
Architectural Overview ... 26

Rockwell Press System Interface Module ... 28
Inventory System Module ... 29
Print Subsystem Module .. 30

UML Diagrams .. 32
System Core ... 32
Radio Interface .. 33
Rockwell Press System Interface .. 34

Print Subsystem .. 35
User Interface .. 36

User Interface Forms ... 38

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

5

System Overview Form ... 38

Map Form .. 39
SYSTEM Status Dialog ... 40
Setup SYSTEM Path Toolbar.. 41

Station Setup Form .. 43
Move Orders Queue Form ... 44
Paper Rolls Overview Form .. 45
Pallet Insertion Dialog ... 48
Staging Pallet Delivery Form .. 49

Staging Pallet Pickup Form ... 50
Empty Pallet Pickup Form ... 51
Pallet Status Form .. 52
Press Setup Dialog ... 53
Press Setup Form ... 54

Press Status Form .. 55
Press Status Dialog .. 56

Event Logging ... 57

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

6

Overall Software Architecture
The System is planned as a system with plug-in support. The core module provides an SYSTEM

handling and plug-in modules add additional features to the software. This architecture makes

the SYSTEM highly extensible and configurable.

Figure 1. Overall System Architecture

The System will consist of following modules (Fig. 1):

1. System Core;

2. Inventory System;

3. Radio Interface Module;

4. Interface to External Systems;

5. Administration Module;

6. Abitrol Inventory Interface Module;

7. Rockwell Press System Interface Module;

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

7

Following applications will be developed as a stand-alone applications:

1. Factory Layout Editor

2. System Simulator

Core Architecture Overview

The Core will consist of following subsystems:

1. Event Handling

2. Factory Layout

3. SYSTEM Handling

Event Handling Subsystem

This subsystem dedicated to event handling and consist of following parts:

1. Event Queue –receives events, stores them, sorts by priority and sends to event dispatcher

2. Event Dispatcher – receives the event from Event Queue, define event type and send it to

according event handler

3. Event handlers implement business logic of event handling of each event type. The

handlers can call core modules via Core API. Thought business logic will be realized

according to Business function diagrams.

Factory Layout Subsystem

This subsystem contains and handles all the information related to factory. Factory layout

consists of Routes (wires) which are used by SYSTEM s as a controlling routes. Each route is

divided to Segments. Segment is a part of route between two stations. Each segment can contain

SYSTEM on itself. Each station can contain SYSTEM too.

SYSTEM Handling Subsystem

This subsystem is dedicated to assigning SYSTEM s to tasks and selecting the optimal route for

SYSTEM s. It’s mostly mathematical problem and it will be done by one class – Order Factory.

This class (maybe with some inner additional classes) will be designed to solve the problem of

selecting optimal route for SYSTEM and to generate order of commands for selected SYSTEM

.

External Modules Overview

The rest of the system functionality will be provided bu external plug-in modules.

Press Subsystem

This subsystem contains and handles all the information related to press factory. Factory Layout

contains Presses (and reels), rolls and pallets. All these objects interacts with SYSTEM s.

Factory Layout is updated time to time to represent last information about SYSTEM location,

press jobs, etc.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

8

External Data sources Subsystem

All the data sources for system core are planned to be pluggable modules. They must implement

ExternalDS interface.

Rockwell Press System Query Interface

According to documentation Rockwell Press System should be queried via sockets using special

protocol.

Abitrol Query Interface

Cannot be designed because of information lack.

Inventory Query Interface

Inventory subsystem is an ―internal‖ database designed to store information about paper rolls and

pallets, its moving, using and wasting. This database is planned to be developed on MS SQL

Server and it can be queried via OLE DB interface.

Radio Interface Module

For communicating with SYSTEM s radio signals are used. This subsystem will consist of the

following classes:

1. RadioReceiver – sends and receives data to and from radio interface. This class is

designed to work with hardware layer

2. MessageTranslator – translates data from object form to bytes for sending (and vice

versa)

All the orders are from order factory should be translated by MessageTranslator and sent by

RadioReceiver. All the signals from the SYSTEM are translated to events and put to EventQueue

for processing.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

9

System Requirements
The following system requirements are approximate and can be changed during system

development.

Operating System Requirements

Client

Client software (E.g. operator’s console) will work on following operating systems:

Microsoft® Windows® 98

Microsoft® Windows® 98 Second Edition

Microsoft® Windows® Millennium Edition

Microsoft® Windows NT® 4.0 Workstation with Service Pack 6.0a or later

Microsoft® Windows NT® 4.0 Server with Service Pack 6.0a or later

Microsoft® Windows® 2000 Professional

Microsoft® Windows® 2000 Server

Microsoft® Windows® 2000 Advanced Server

Microsoft® Windows® 2000 Datacenter Server

Microsoft® Windows® XP Home Edition

Microsoft® Windows® XP Professional

Microsoft® Windows® Server 2003 family

Server

Server software (System Core and additional plugins) will run on following operating systems:

Microsoft® Windows® 2000 Server with Service Pack 4.0

Microsoft® Windows® 2000 Advanced Server with Service Pack 4.0

Microsoft® Windows® 2000 Datacenter Server with Service Pack 4.0

Microsoft® Windows® Server 2003 family

Hardware Requirements

Hardware resources may need to be increased during production system testing. The following

requirements are approximate and based on Microsoft’s system requirements for running .NET

applications.

Client

Required

processor

Recommended

processor

Required RAM Recommended

RAM

Hard Disk

Space

Pentium 90 MHz* Pentium II 450 MHz

or faster

32 MB* 96 MB or

higher

200 MBytes

*Or the minimum required by the operating system, whichever is higher.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

10

Server

Required

processor

Recommended

processor

Required RAM Recommended

RAM

Hard Disk

Space

Pentium 133

MHz*

600 MHz Pentium

processor, or an

AMD Opteron, AMD

Athlon64 or AMD

Athlon XP processor

128 MB* 256 MB or

higher

3 GBytes for

OS, .NET

Framework and

Database

*Or the minimum required by the operating system, whichever is higher.

Additional Software Requirements

Client

Name Version

Microsoft Message Queue (Included) 2.0 and higher

Microsoft .NET Framework 1.1 (not tested on 2.0)

Server

Name Version

Microsoft Message Queue (Included In Server versions of

Windows Operation Systems)

2.0 and higher

Microsoft .NET Framework 1.1 (not tested on 2.0)

Database Server and .NET Data Provider for it Suppose it will be MSSQL

2000 Server or later

Additional System Requirements

 Network connection to connect from client terminals to server

 Support for TCP/IP protocol

 Active Directory infrastructure is highly recommended to use the advantages of

centralized security administration

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

11

Functional Specification

System Core

This module provides communication to the database, SYSTEM registers, station labels, pick

and drop points as defined by the specific image of a manufacturing company in memory

(factory layout), communication error handling among different modules, unsynchronized event

notification for some modules in the system, and handling of error conditions in the system.

The System Core (Core) is planned as a event-driven system. The main function of the core is to

dispatch messages coming from external modules (SYSTEM, Inventory, External Sensors…), by

send them for handling to according module. For example, if we get message ―Roll is ready‖

from sensor in roll preparation area, the message will be generated and sent to subsystem. This

architecture gives us asynchronous process execution, small core program size (everything is

done by modules) and ability to easy extend the system just by adding new message types for

different modules.

The Core itself is a single class (SYSTEM Core), that handles following subsystems:

1. Event Handling

2. Factory Layout

3. SYSTEM Handling

System Core is planned to be written as a Windows Service. All communications to the core will

use Event Handling subsystem as a communication channel.

Old configuration files – ―Application Build File‖ and ―Layout Builder File‖ (see ―Specification

for old systems‖ document) will be distributed among database and Windows registry. Database

will contain following sections

1. Automatic battery change/charge maintenance (BCM) stations.

2. SYSTEM number, type mask, radio number, radio id

3. For each pick and/or drop location

a. Location name

b. Station number

c. Location type

d. Calculated minimum transfer time

e. Load present discrete number

f. Default pick priority

g. Default drop location tag

h. SYSTEM service type

i. Queue size default limit

4. For each station

a. stn station number

b. Necessary discrete

c. Signal Discrete

d. Push station

5. Extended Drop Location Tag Definition File

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

12

6. COB tables

Registry will contain following values:

1. Company name, Installation location

2. Communications parameters

3. Move automatic priority age in minutes for each of the nine priorities

4. Host present flag

5. Discrete present flag

Event Handling Subsystem

This subsystem dedicated to event handling and consist of following parts:

Class Name Description

EventQueue Gets external events from Event Sources, manages them, sorts by

priority and redirects to EventDispatcher

EventDispatcher Takes messages from the queue and redirects them to an

according handler. This class will be realized as a service.

EventHandler Every event handler must implement this interface to be

registered in the system. Different event handlers for different

events can be plugged-in.

SYSTEM EventHandler Class that handles the events coming from the SYSTEM

ExternalSourceEventHandler Class that handles the events coming from external sensors,

buttons, etc.

OperatorEventHandler Class that handles the events coming from operator console

ErrorHandler Class that handles the system errors

Event Abstract class that encapsulate an information about event

coming from the source

SYSTEM Event Class that represent an event coming from the SYSTEM

ExternalSourceEvent Class that represent an event coming from External Source

(sensor, button, etc)

OperatorEvent Class that represent an event coming from operator console

It is proposed that persistence layer will be developed to store event queue just in case of system

crash to restore it. Thought it will be a database tables.

Functional Description

Event handling system should do the following things

1. Event Queue gets the event from event source and store it.

2. Event Queue puts the event into right place (for example, error events should be handled

first).

3. Event Queue extracts the first event and sends it to EventDispatcher.

4. Event Dispatcher finds and loads an Event Handler that is able to handle given type of

the event.

5. Redirect the Event object to the Event Handler.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

13

6. Event Handler encapsulates logic that handles the event and can call methods from the

other classes of the Core API.

Additional Requirements

1. Dynamically add event types

2. Dynamically add event handlers for event types

3. All these changes should be done without editing system source code

Solution

To satisfy the requirements of dynamic events and handlers addition the plug-in mechanism will

be used. Windows .dll files will be used to dynamically add new Event Types and Event

Handlers to the SYSTEM.

Plug-in module mechanism

The idea of plug-in modules is easy. Each module must implement interface EventHandler. This

interface has a method that registers link to Factory class in the plug-in’s body. The plug-in gets

an access to Factory class (and instances of other classes) through public Factory methods (see

System Core UML diagram, IFactory interface). For example, we can get a list of all SYSTEM s

in system by calling getSYSTEM s method. This method returns a collection of instances of

ISYSTEM interface. All API classes will implement corresponding interfaces, which will be

contained in single .dll library. Interfaces listed below will make Core API. They will be used for

additional event handlers writing. Methods of these interfaces will be the same as methods of the

classes with the same name.

 IEventHandler

 Event

 IFactory

 IRoute

 ISegment

 ISYSTEM

 IStation

 ICarryable

Detailed description of these interfaces given in the next chapters. The common scheme of plug-

in architecture sequence of actions looks like this:

1. Event Dispatcher service starts

2. It instantiates Factory, Route, Segment, SYSTEM , Station objects and their state (loads

it from database)

3. Then Event Dispatcher loads plug-in libraries and instantiates plug-in modules then

registers Factory class instance in each plug-in

4. All the plugins get the access to the SYSTEM instances, Routes, Stations only through

API.

5. Every plug-in can contain its own classes for work. For example Radio Interface plug-in

can contain classes for working with RS-232 interface.

6. When all the plugins loaded system starts.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

14

7. When message arrives, EventDispatcher starts corresponding EventHandler (it can be

more than one handler to handle events) in separate thread. Message is handled

asynchronously.

8. If external module needs to communicate with Core (needs to get some information

FROM Core) it should create its own message queue. Event handler will place core

answers to this queue after handling the event.

9. If there is no corresponding handler, warning message is written to Event Log

10. If external module needs factory layout for working (e.g. Factory Map Module needs the

information about stations, SYSTEM s, etc.) it can be downloaded in XML format.

Direct core database access should be denied to provide security and extensible

architecture. The sample algorithm of Factory Map module may look like this:

a. System core loads event handler plugin for this module

Core

Hard Drive
Plugin

b. User starts console on remote computer

c. Console send the event ―Console Started‖ to Core

d. Core receives the event and redirects it to event handler

Core

Plugin

Event
Dispatcher External Module

Console
Started

Core

Plugin

Event
Dispatcher External Module

Console
Started

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

15

e. Event handler builds factory layout in XML form and sends it back to console

using private message queue. Each client has its own event queue for answers.

f. Console receives the layout and build its own object model (inherited from Core

API interfaces) to represent it in ―map‖ style.

g. Console can send messages about map updates (e.g. during map editing), Handler

will update factory object model on server side

h. Core can send events to console about layout update from another modules (it

may be non-XML protocol), so object model on client side will be updated.

Core

Plugin

Event

Dispatcher

External Module

Factory

AGV

moved
AGV

moved

AGVmoved

Core

Plugin

External Module
< xml version

1 . 0 ... >
< Factory >

…
< / Factory >

Event
Dispatche

r

Core

Plugin

External Module

Factory

Event
Dispatcher

Core

Plugin

External Module

Factory

Station
Added Event

Dispatcher

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

16

Class and Interface Description

Only public methods and properties will be described. Classes that implement base interfaces (or

extend base classes) will not be described unless they have some specific properties or methods.

Event Queue Class

This class can be replaced with MSMQ, which provides the same functionality.

Method Name Description

putEvent(Event e) This method is called by external modules to add the

event to Event Queue. Parameter – instance of Event

Class

Event Dispatcher Class

Will contain reference to Factory class instance. When Event handler is added to Dispatcher, it

gets this reference for callbacks.

Method Name Description

dispatchEvent(Event e) This method is called by Event Queue when it

sends the Event to Dispatcher. Parameter –

instance of Event class

addEventHandler(EventHandler eh) Register new Event Handler in Dispatcher.

Event Handlers can be registered during system

work. Parameter – instance of EventHandler

class.

removeEventHandler(EventHandler eh) Unregister an Event Handler. Parameter –

instance of Event Handler Class to be removed.

FindPlugins(String path) Searches plugins. Parameter – folder where

plugins located

IEventHandler Interface

Method Name Description

handleEvent(Event e) The method is called by Event Dispatcher to

handle the Event. Parameter – instance of Event

class

getEventType() Shows the type name of the Event that instance

of EventHandler can handle.

getDescription() Shows the short description of Event Handler

registerFactory() Used for registering Factory instance in plug-in

Event Class

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

17

This class is NOT abstract. Event class must be serializable to have a possibility to send events

via different transports (network, message service). Because of plug-in architecture NO Event

subclassses can be send to Core. All event generators from all sources must use Event class to

send events, so this class is sealed to prevent inheritance.

Property Name Description

HIGH_PRIORITY High-priority message type constant

NORMAL_PRIORITY Normal-priority message type constant

LOW_PRIORITY Low-priority message type constant

Method Name Description

getType() Shows the type name of the Event

getBody() Returns event body in object form.

getSource() Returns event source of the event.

getPriority() Returns priority of an Event instance

MSMQ Proposal

But from the other side instead of writing event queue class Microsoft Message Queue (MSMQ)

mechanism can be used. This is an analogue of ―mailboxes‖ used in previous version of the

system.

Messaging and messages provide a powerful and flexible mechanism for interprocess

communication between components of a server-based application. They have a number of

advantages over direct calls between components, including:

 Robustness — Messages are considerably less affected by component failures than direct

calls between components, because messages are stored in queues and remain there until

processed appropriately. Messaging is similar to transaction processing, because message

processing is guaranteed.

 Message prioritization — More urgent or important messages can be received before

less important messages, so you can guarantee adequate response time for critical

applications.

 Offline capabilities — Messages can be sent to temporary queues when they are sent

and remain that way until they are successfully delivered. Users can continue to perform

operations when access to the necessary queue is unavailable for whatever reason. In the

meantime, additional operations can proceed as if the message had already been

processed, because the message delivery is guaranteed when the network connection is

restored.

 Transactional messaging — You can couple several related messages into a single

transaction, ensuring that the messages are delivered in order, delivered only once, and

are successfully retrieved from their destination queue. If any errors occur, the entire

transaction is cancelled.

 Security — The Message Queuing technology on which the MessageQueue component

is based uses Windows security to secure access control, provide auditing, and encrypt

and authenticate the messages your component sends and receives.

But the system must meet the following requirements to develop MessageQueue components:

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

18

 To see queue information in Server Explorer or to access queues programmatically,

Message Queuing on your client computer must be installed.

Pros and cons for using MSMQ:

1. Development time can be decreased

2. Persistence, reliability and security problems are solved ―automatically‖

But

1. This infrastructure will tie our system to MS Windows Platform only.

2. Need some investigations about speed (can we guarantee particular delivery time?).

3. Need to buy Windows 2000 Server license.

Factory Layout Subsystem

This subsystem contains and handles all the information related to factory. Factory layout

consists of Routes (wires) which are used by SYSTEM s as a controlling routes. Each route is

divided to Segments. Segment is a part of route between two stations. Each segment can contain

SYSTEM on itself. Each station can contain SYSTEM too.

Class Name Description

IFactory Interface that contain the information about factory layout and

objects in this layout

IRoute Route in factory layout with the dedicated frequency. Up to four

routes may be in factory

ISegment Interface that contain an information about segments (part of the

route between two stations)

ISYSTEM Represents the SYSTEM in core object model

IStation Interface represents station on the factory route. Implementing

class has three subclasses: DropLocation, PickLocation,

BaseStation

ICarryable All the object that can be carried by SYSTEM must implement

ICarryable interface for easy adapting SYSTEM for specific

requirements

Class and Interface description

Only public methods and properties will be described. Classes that implement base interfaces (or

extend base classes) will not be described unless they have some specific properties or methods.

IFactory Interface

Method Name Description

getRoutes() Return routes present in factory layout

getSYSTEM s() Return list of all SYSTEM s registered in factory

getSYSTEM ById() Returns one SYSTEM instance by SYSTEM s ID.

registerSYSTEM () Registers an SYSTEM in factory

unregisterSYSTEM () Unregisters an SYSTEM in factory

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

19

Method Name Description

addRoute() Adds additional route in factory layout

removeRoute() Removes route from factory layout

IRoute Interface

Method Name Description

getID() Returns route number

getFrequency() Returns frequency value of the route

getSegments() Returns list of segments route consists of

addSegment() Adds a segment to route

removeSegment() Removes a segment from route

getStations() Returns stations array, which are located on the route

getStationById() Returns one stations by its label

addStation() Adds station to the route

removeStation() Removes station from the route

ISegment Interface

Method Name Description

getLength() Returns the segment length

getStartStations() Returns a start station of the segment

getEndStation() Returns an end station of the segment

setStartStation() Sets the start station of the route

setEndStation() Sets the end station of the route

setRoute() Sets the route for a particular segment (may be needed

for route development tasks)

getRoute() Returns the reference to Route that a segment belongs to

getSYSTEM s() Returns a list of SYSTEM s that are on this route

ISYSTEM Interface

Method Name Description

getLoad() Returns an instance of Carryable – current load of an

SYSTEM

setLoad() ―Loads‖ an SYSTEM with the instance of Carryable

getCurrentStation() Returns station that an SYSTEM moves to.

getId() Returns an SYSTEM number

getSegment() Returns the segment that an SYSTEM is moving along

getDropLocation() Returns a drop location assigned to an SYSTEM

setDropLocation() Assigns drop location for an SYSTEM

getPickLocation() Returns a pick location assigned to an SYSTEM

setPickLocation() Assigns pick location to an SYSTEM

getParkLocation() Returns a park location of an SYSTEM

setParkLocation() Assigns a park location to an SYSTEM

getStatus() Returns SYSTEM current status

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

20

Method Name Description

setStatus() Sets a particular status to an SYSTEM

getAction() Returns current action that an SYSTEM executes

getMoveNumber() Returns move number of an moving order

start() Starts SYSTEM

SYSTEM Class

Method Name Description

setOrder() Protected. Sets the move order to an SYSTEM

getOrder() Protected. Returns an SYSTEM ’s move order

IStation Interface

Method Name Description

getIncomingSegments() Returns a list of incoming segments for this station

getOutgoingSegments() Returns a list of outgoming segments for this station

addIncomingSegment() Adds incoming segment for the station

addOutgoingSegment() Adds outgoing segment for the station

getSYSTEM () Returns an SYSTEM which resides on a station

getId Returns a station Id (label)

getStatus() Returns station status

setStatus() Assigns a status to a station

getLoad() Gets a Carryable instance – something that lays on a

location

setLoad() Puts a Carryable instance to a location

ICarryable Interface

Method Name Description

setSYSTEM () ―Loads‖ Carryable to an SYSTEM

getSYSTEM () Returns the reference to an SYSTEM that carries this

object

setStation() ―Puts‖ the object to a station

getStation() Returns the reference to a station that object lays on

The SYSTEM Handling Subsystem

This subsystem is dedicated to assigning SYSTEM s to tasks and selecting the optimal route for

SYSTEM s. It’s mostly mathematical problem and it will be done by one class – Order Factory.

This class (maybe with some inner additional classes) will be designed to solve the problem of

selecting optimal route for the SYSTEM and to generate order of commands for selected

SYSTEM .

Class Name Description

OrderFactory Class that generates orders and assigns them for SYSTEM s. It

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

21

Class Name Description

finds SYSTEM to execute, finds the shortest route, assigns order

for SYSTEM and puts it into OrderQueue – array of orders that

are waiting of execution, sort them by priority and call SYSTEM

class methods to assign order. OrderFactory is also contains an

array of pre-computed paths.

Path Set of segments from start station to goal station.

Order Set of waypoints (path) for SYSTEM and actions to execute on

each waypoint.

Action Single action for the SYSTEM to execute. Contains station where

action should be executed and action description in form ―CAL

table id + modifier‖. Each action has its state (waiting, executing

or completed), time to come and action duration. Used inside

Order class only.

Class and Interface description

Only public methods and properties will be described. Classes that implement base interfaces (or

extend base classes) will not be described unless they have some specific properties or methods.

OrderFactory Class

Method Name Description

setStart() Sets start point of route

setGoal() Sets goal point of route

generateSYSTEM Order() Generates the order for the SYSTEM if start and goal

points are set. After generation nullifies start and goal

points

getOrderQueue() This method allows to get an access to orders process

list

Path Class

Method Name Description

getSegments() Returns the segments that a path consists of

addSegment() Adds one segment to a path.

removeSegment() Removes a segment from a path.

getLength() Returns the length of a segment. This method does not

count collision resolve time.

getStations() Returns a list of a stations that belongs to a path

Order Class

Method Name Description

getSYSTEM () Gets the SYSTEM this order assigned to.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

22

Method Name Description

setSYSTEM () Protected. Assigns the order to SYSTEM. Cannot be

accessed from outside.

getPath() Returns a path assigned to the order.

getActions() Returns a list of actions that are assigned for this order.

Each action can be changed then.

addAction() Adds an action for a station. Only actions for stations in

the path can be added.

Action Class

Method Name Description

getCalId() Returns CAL table number that an action associated to

setModifier() Sets CAL modifier

getModifier() Returns CAL modifier for an action

getState() Returns action state (wait, executing, completed)

getStation() Returns station the action should be executed on

setStation() Protected. Assigns the station for the action

getDuration() Returns duration of an action

getComingTime() Returns a time when the SYSTEM will come to a station

to execute an action. Needed for collision prevention.

setComing Time Protected. Changes the SYSTEM’s coming time to a

station.

Optimal Path Finding Algorithm

Let’s make some assumptions

1. Each robot has an assigned goal, and each robot knows its start and goal positions;

2. Robots have a pre-defined path system;

3. Robot can walk out of path, but in pre-defined places only (on stations)

4. Robots cannot communicate to each other.

5. In case of collision robot stops and waits for commands

6. All robots has a constant speed

7. Robot can stop and do some work only on stations

8. All path are unidirectional

9. Robot does not have reverse speed

10. In the end of work robot goes to particular place for charging

The aim of optimization is to minimize the time for loaded SYSTEM moving. The aim of free

robot path optimization is to minimize collisions with loaded SYSTEM s. It can be not optimal

in terms of time, but it will minimize the time for loaded robots.

There are a number of algorithms for finding paths in dynamical environment: A*, D* and its

modifications, adapted genetic algorithm, ant-based pathfinding, neural networks can be adapted.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

23

Neural networks and ant-based pathfinding are not optimal for this problem, because they are too

interial. They need too much time for teaching (of course they can be teached using simulators)

and in case of Factory Layout changing they will make a big number of errors. Moreover, these

algorithms are quite hard to implement.

Genetic algorithm as also hard to implement on program language and they are less ―natural‖

from the poit of clearness.

A* and D* are heuristic algorithms and are not computationally expensive, but they are good for

partially unknown environments or big graphs with a big number of nodes and arcs.

Exact algorithms such as Dijkstra or Floyd algorithms computationally more expensive, but they

generate exact results for well-defined situations. In case of good implementation exact

algorithms can be quite fast (AMD K6-2 400MHz RAM 64M, graph nodes = 100000, arcs =

200000 finding the shortest path takes 0.4 seconds (AGraph library)), and they are easier to

implement than heuristic or neural algorithms. So, it is proposed than exact algorithms will be

used.

All SYSTEM s has a state, so has priorities (less number – higher priority)

1. Moving to drop

2. Moving to pick

3. Moving to charge

4. Moving to park

States

1. Parked

2. Picking

3. Dropping

4. Charging

are ―static‖ states and do not have an impact to the pathfinding algorithm.

If SYSTEMs has the same status, the SYSTEM that have got the task earlier, has a higher

priority. If the task was given simultaneously, the SYSTEM with the shortest rest of the way has

a higher priority. Prioritizing needs for deadlock prevention.

All the calculations will be made on digraph with weighted arcs (route segments) and nodes

(stations). The weight of arc is the time needed for the SYSTEM to go along the arc. The weight

of node is the time that SYSTEM should stay on this node. A weight of a node is a dynamic

value (depends on time), and a weight of an arc – static value.

As it can be understood from documentation, all of the routes are the routes from pick locations

to drop locations, from drop locations to service locations and from service locations to pick

locations. So the number of possible paths is a limited value. The first idea of increasing speed of

calculations is precomputing all ―typical‖ paths and store them in memory (possibly in database

in case of very large number of paths). So, we have a limited number of paths stored in memory

with precomputed length (length mean time to go from start location to goal location in case of

other robots absence). All the paths in this path list are sorted by length.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

24

Initially there are four sets of stations: P – pick locations, D – drop locations, S – service

(charge) locations, B – base locations. We add fifth set of location – I – intersections of

segments. Intersections are important, because they are used more intensively than base stations

and intersection is always a potential bottleneck in any traffic systems.

The aim of the algorithm is minimizing value

M

k

k

N

i

ij NCRT
11

)(, where)(jRT - time for

SYSTEM number j.

N

i

iC
1

 - the cost of the path without collisions (―static‖ cost),

M

k

kN
1

- the

time that SYSTEM must stay on Station number k. Let’s make the algorithm (without loss of

generalization) for delivering roll from pick location S1 to drop location G1. This algorithm uses

the ―velocity-path‖ decomposition, ―path‖ part (

N

i

iC
1

) is precomputed and ―velocity‖ part

(

M

k

kN
1

) should be calculated.

1. Set up start point and goal point (S1 P and goal point G1 D)

2. Select the shortest path from the precomputed paths

3. loop

4. Find the possible collisions. Collision occurs if two SYSTEM times are equal on the

same station.

5. If potential collision is identified the station before station on the route where collision is

identified gets a weight which equals the time the SYSTEM should stay to resolve

collision according to SYSTEM priorities.

6. If potential collision node (Ncoll I) try to set weight for previous node (N) on the route

that belongs to B set.

7. When all nodes are weighted, the cost of the path recalculated.

8. If selected path cost less than ―static‖ path cost of the next precomputed path in a path list

(or it’s a last path) take this path as a shortest path and go to step 10

9. Else select next path from path list and go to step 3

10. Assign the path found to SYSTEM

Data structures

For storing graph used in algorithm adjacency list will be used. Every node (station) has a link to

its neighbors, so we have description of the full factory layout. From the other side, each route

segment has a link to its start and end stations, so, the factory layout graph is stored as an array

of nodes (stations), array of arcs (segments) and as a adjacency list (each station has an array of

segments it belongs, so it has a list of near stations). Adjacency matrix may be used in case of

performance problem with the list. Now there’s no reason to use this representation because it

looks like there are more than 50% of the nodes have single incoming arc and single outgoing

arc, so the matrix will be strongly rarefied. Moreover, object representation gives more ―natural‖

way for manipulating graphs, so it will be easier to implement algorithms.

Error conditions handling

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

25

In case of SYSTEM breakdown the system will find all the SYSTEM s that using the segment

where breakdown occurs and stops them on the nearest station. Then the system will try to re-

plan paths of the SYSTEM s from the stop point to goal point. The order of the re-planning –

from the nearest to breakdown to the farthest. If there’s no alternative path the SYSTEM will be

stopped until broken SYSTEM will be taken off from the segment. During the breakdown

segment’s length is changing to infinity number to exclude it from path planning. When broken

SYSTEM will be moved off the path, the segment’s length will be changed to its previous value.

If some SYSTEM ’s were moving to longer paths it will be attempted to re-plan their paths to

redirect them to more optimal path. Dynamic path re-planning will be implemented using

Dijkstra algorithm.

The sequence of steps in case of error condition will look like this:

1. Define segment when error occurred

2. Mark all segments from breakdown backward to nearest crossing as locked

3. Create list of SYSTEM s that located on these segments

4. Stop these SYSTEMs.

5. For each SYSTEM in list starting from the nearest to breakdown

6. Modify the SYSTEM’s action list to move it as close as possible to broken SYSTEM

and stop. Mark the segment preceding to breakdown segment as locked.

7. Start the SYSTEM

8. If SYSTEM list is not empty move to step 5

9. For each SYSTEM located before locked part starting from the nearest to breakdown

10. Find alternative path to goal point using Dijkstra algorithm and static weights of the

segments

11. If the path found, recalculate velocity profile for the SYSTEM and go to step 10

12. Else modify the SYSTEM’s action list to move it as close as possible to broken SYSTEM

and stop. Mark the segment preceding to breakdown segment as locked.

13. Start the SYSTEM

14. If SYSTEM list is not empty move to step 9

The sequence of steps when broken SYSTEM taken off from the segment

1. Create list of SYSTEM s that may use this segment.

2. For each SYSTEM closest to the segment.

3. Find path that is more short than current.

4. If path found calculate velocity profile.

5. If the path still has smaller weight reassign SYSTEM to this path.

6. Else let the SYSTEM stay on previous path.

Requirement to recalculation algorithm: total recalculation time for one SYSTEM must be less

than 0,5 seconds.

Task assignment algorithm

When the system gets a task it should execute the following sequence of actions:

1. Create a list of SYSTEM s which are not carrying any load and not going for charging.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

26

2. For all free SYSTEM s find the closest SYSTEM for executing the task. First try to find

if the situation is ―standard‖ (precomputed), else generate the route using Dijkstra

algorithm.

3. Then velocity profile for the SYSTEM that has the shortest static route is generated.

4. The shortest route is selected from all routes found on step 2.

5. If generated route (with velocity profile) is still the shortest then the SYSTEM is selected

for task execution

6. Else select the shortest route without velocity profile and go to step 3

7. SYSTEM assigned to the path that have been generated then starts moving

8. If during the SYSTEM’s moving another SYSTEM becomes free (and it does not needed

to be charged), the system calculates if it is closer to task point than currently assigned

SYSTEM.

9. If yes, the path for new SYSTEM generated (with velocity profile generation).

10. If this path is shorter than currently SYSTEM has, the task is assigned to new SYSTEM

11. Previous SYSTEM becomes free and goes to parking point (or can be assigned to

another task)

So, it is proposed to use exact Dijkstra algorithm for computing the shortest path and a number

expert rules for collision and error conditions resolving.

Radio Interface Module

Module responsible for communication with radio subsystem. This module is responsible for

support of constant stream of information to be sent and received using the radio interfaces. Will

notify the core system module when completing tasks for sending messages. It will be

programmed to scan the condition of the main modules of the system automatically (if has no

first priority tasks for execution). This module is responsible for reducing waiting time and all

radio interface activity.

List of Requirements

1. Communication errors handling

2. Isolation from low-level interface (RS-232 or others)

3. Make status poll automatically

Architectural Overview

The module can be divided to two parts: a Radio Receiver Client and a Radio Module Event

handler. The Radio Receiver Client instances located on communication hosts, there can be up to

four Radio Receiver Client instances (according to old system specification). The Radio Module

Event Handler is designed as core plug-in and resides on host where System Core located.

The Radio Receiver Client (Just ―Client‖ from here) just sends and receives arrays of bytes. It

―knows‖ how to send command to particular SYSTEM in terms of communicating protocol

used. Each instance of the Client has a list of SYSTEM s it controls. Each SYSTEM in list has a

command queue. If there are no commands come from System Core, the Client polls SYSTEM s

automatically by generating a command and putting it into command queue for particular

SYSTEM and sends received status reports to the Core. All instances of the Client use one

(common) message queue to send events to the System Core. Each Client instance use its own

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

27

message queue to get byte array to send from the Core. All byte arrays are sent via RS-232

interface. When a message arrives, the Client creates message and puts it to MSMQ. The

message contains encoded byte array.

The Radio Module Event Handler, from the other side, receives messages from all Clients,

decodes them and updates factory layout according to the status received. It also contains a list of

radio Clients and information about which SYSTEM is connected to each Radio Module Client.

If another module starts SYSTEM (e.g. SYSTEM can be started from Operator Interface) or

changes its status, it notifies the Core by creating event and putting it to MSMQ. Radio Module

Event Handler gets the notification and generates command for SYSTEM. Then this command is

―wrapped‖ into message and put to the Client message Queue.

Class Name Description

RadioReceiver Class responsible for sending and receiving information via radio

channel. It works with hardware. There can be up to four

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

28

Class Name Description

RadioReceiver instances to service up to four radios.

MessageTranslator Class translates messages from object representation to byte

arrays.

RadioHandler Plug-in class that handles events coming from RadioReceiver and

sends commands to SYSTEM via the same RadioReceiver.

Class and Interface description

Only public methods and properties will be described. Classes that implement base interfaces (or

extend base classes) will not be described unless they have some specific properties or methods.

RadioReceiver Class

Method Name Description

SendBytes() Sends byte array to particular SYSTEM

ReceiveBytes() Receives byte array from radio interface

MessageTranslator Class

Method Name Description

TranslateOrder() Translates order for SYSTEM to byte array

TranslateEvent() Translates incoming byte arrays to system events

MessageTranslator Class

This class implements IeventHandler interface, so their descriptions are the same.

Rockwell Press System Interface Module

According to documentation Rockwell Press System should be queried via sockets. When it is

needed to start press job, QueryData() method of class RockwellDS is called from the core, then

queryPress() method is called. This method generates query message, send it to press and

receives an answer. Then results are returned as a result of QueryData() method execution.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

29

Class Name Description

RockwellPress Class that represents press to be queried. Each press has links to

two instances of RockwellServer class – primary and backup.

RockwellServer This class contains information about servers: IP address, name,

etc

RockwellMessage This class represents message to be send (and received) to (and

from) rockwell server.

Inventory System Module

Inventory system object model contains of classes represented in factory layout model. All these

classes will be mapped to Inventory Data M odel described in corresponding document.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

30

Class Name Entity Name

Press Presses

Reel Reels

Roll Rolls, Roll_Categories, Roll_Qualities,

Manufacturers, Paper_Colors

Link between Reel and Roll Roll_On_Reels

Pallet Pallets, Pallet_status, Statuses, Advertisers,

Rack_Locations

Insert Inserts

Print Subsystem Module

Inventory system object model contains of classes represented in factory layout model. All these

classes will be mapped to Inventory Data Model described in corresponding document.

Class Name Entity Name

PressJob Contains the information about rolls needed for

press job

PressJobInfo Contains the Reel-Roll information about how

many rolls needed on which press reel.

Roll Contains the information about press rolls

Pallet Class represents pallets in the system. Pallets are

used in press job.

Insert Each pallet contains a number of inserts. This

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

31

Class Name Entity Name

class represent one insert instance

Press Class represent press in factory

Reel This class represents reels on press.

PressJob Contains the information about rolls needed for

press job

PressJobInfo Contains the Reel-Roll information about how

many rolls needed on which press reel.

Roll Contains the information about press rolls

Pallet Class represents pallets in the system. Pallets are

used in press job.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

32

UML Diagrams

System Core

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

33

Radio Interface

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

34

Rockwell Press System Interface

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

35

Print Subsystem

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

36

 User Interface

The interface of the new SYSTEM C system will utilize all the features of rich windows

interface: drop-down lists with spellchecking, drag-and-drop mechanism, customizable toolbars,

hot keys, etc. Supposed that there will be map representation of system status, and user will get

status of any object on the map (SYSTEM , Station, Press) just by clicking on it. Status of each

object will also be highlighted by color for easier information perception. But from the other

hand there will be a set of keyboard-optimized forms for quick and mass input of data.

Some forms will reproduce old console forms (user will not be needed to restudy), but even these

forms will utilize all Windows UI features.

This application will use ―Project‖ (according to Microsoft’s ―Official Guidelines for User

Interface Developers and Designers‖) window management model. It will be main window with

menu bar and toolbars and a number of independent windows that can be managed

independently. Each window will have its own button on windows taskbar

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

37

Menu structure was developed according to business process description and forms in menu will

be developed to help users to do their routine operations more efficiently.

User interface will interact with the SYSTEM via Events to isolate interface implementation

from system. The main reason to do this is isolation of UI implementation from system

implementation. It gives us an ability to use hardware terminals or UI implemented under

different OS.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

38

User Interface Forms

System Overview Form

This form represents system status in old, table-view form. By clicking on SYSTEM or Move

Order context-depended actions (e.g. SYSTEM disabling or Move Order removal) can be

executed.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

39

Map Form

This represents system status in map-style form. SYSTEM status is represented by color (gray –

moving to load, blue – loaded, red - down). If SYSTEM is selected its route is highlighted on

factory map. Among properties the form gives the ability to execute actions for each object via

context menu. For example, right-clicking on SYSTEM we will get following list of possible

actions:

1. Enable

2. Disable

3. Remove from path

4. Go to charger

5. View status

6. View move orders

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

40

SYSTEM Status Dialog

This dialog shows SYSTEM status and gives the ability to change the status for the privileged

person.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

41

Setup SYSTEM Path Toolbar

This purpose of this toolbar is to define SYSTEM’s pick, drop and park location. The toolbar

will be shown on the top of the map form and user will be able to select SYSTEM and stations.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

42

Station Setup Dialog
This dialog shows Station status and properties and gives the ability to change the status or some

properties for the privileged person.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

43

Station Setup Form

The Station Setup form is used during system maintains to change station properties.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

44

Move Orders Queue Form

This form shows the move orders queue with possibility to find, filter, sort and delete move

orders. All Windows UI features will be enabled: sorting by any column, moving columns using

mouse and select columns to show.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

45

 Paper Rolls Overview Form

This form displays information about all rolls used in system. This form gives the ability to find

particular paper roll, to sort and filter rolls list and to waste particular roll. Roll Status can be

color-coded. User can define set of columns in the left part of the form.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

46

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

47

Vertical Roll Insertion Dialog
This dialog is dedicated to person on Roll Preparation Station. When the roll is moved to the roll

preparation station the operator will scan the bar code label to get the roll number. The new SYSTEM

S will use this number to retrieve the roll information from the file containing the Arbitral inventory

data manifest and fills in the remaining data fields. This form gives the ability to reject roll and write

reject reason.

Dividing form to two windows will prevent from accidental rejecting roll. Reject comment is a

mandatory field.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

48

Pallet Insertion Dialog

The operator uses this Dialog to enter the pallet information when it is first received and creates

the initial entry into the Pallet Inventory Data Base for this specific pallet.

The new system will utilize features such as look ahead spelling, selection from pull down boxes

and screen population from the data base when possible. It is decided to leave this form design as

in the previous version of the system for easier of use.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

49

Staging Pallet Delivery Form

The form will allow the operator to select a staging location and enter (or select from drop-down

list) the job number for each location.

The SYSTEM S will display all advertisers’ records for each Job ID with the Insert description.

The operator can select the desired advertisers and the system will display the number of inserts,

insert type, and insert stock from the Data Base.

The operator can confirm the delivery request and the SYSTEM S will create a transport order

for that pallet.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

50

Staging Pallet Pickup Form

If some pallets are unused the operator will use the staging pallet pickup form to notify the

system to pick up the unused pallets. The system will display the staging location and the

operator can select from pull down lists or use partial spelling to display the potential pallets to

be retrieved (from the pallets delivered earlier that day) . Once the system has enough

information it will populate the screen with the fields so the operator can confirm that this is the

pallet for pickup. This confirmation initiates the transport order from the SYSTEM S control

system.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

51

Empty Pallet Pickup Form

This form provides a list of the Staging locations (PP01 through PP08); the operator will click on

the locations that have empty pallets to be picked up. Operator can see the information about

each pallet, if needed. This action will initiate a transport order by the SYSTEM S to pick up all

empty pallets and transport to the Waste Area.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

52

Pallet Status Form

This form will allow the operator to select and display the status of the pallets by location or type

of pallet. This screen will display all pallets requests made during a specified period (default last

24 hours). Latest Insertion request will be displayed first. Each pallet will be colored coded

based on the status of the pallet. The most important 4 fields (to be defined) will be displayed in

the list and the user can click on the Insertion Request for example to display all the information

in the Pallet Data base associated with that record. The display types could be:

 Pallet in Receiving Rack location

 Pallet in transit from Receiving Rack to Pallet storage

 Pallet in Storage

 Pallet in transit from storage to staging location

 Pallets at staging

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

53

Press Setup Dialog

The Press Setup Dialog is used to specify the type of rolls to be delivered to a reel stand for a

specified press run, or to modify an existing setup.

Press Setup – Press 1Press Setup – Press 1

Job ID: 199287

Reel 2 Reel 3Reel 1 Reel 4

Width: 1500 Manufacturer Code: 1500

Diameter: 400 Basis Weight: 200

Type: Ship No.: 14

Quantity: 2

Roll Type

Save

Press ID:

Close

Press 1

The form is planned for keyboard input. Navigation will look like this: Job ID – Reel 1 tab –

Width – M. Code – Diameter – (so on from left to right up to down) – Reel 2 tab – (navigation

like ―Reel 1‖).

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

54

Press Setup Form

The Press Setup Form is used to specify the type of rolls to be delivered to a reel stand for a specified

press run, or to modify an existing setup. This form lets the user to select press from the list of all

presses

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

55

Press Status Form

The Press Status form is used at the end of the press run to enter roll diameter for each roll on the reel.

This form lets the user to select press from the list of all presses.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

56

Press Status Dialog

The Press Status Dialog is used at the end of the press run to enter roll diameter for each roll on the reel.

This form has only one field for enter data – ―Diameter‖. It’s a roll diameter after job finish. By

clicking on ―Roll Number‖ form with roll info will be shown.

ProductName. Software Design Document Ver: 2.1.5

Confidential © SolovatSoft, 2007 Page

57

 Event Logging

For logging system standard Windows event logging system will be used. Event logging in

Microsoft Windows provides a standard, centralized way for you to have your applications

record important software and hardware events. When an error occurs, the system administrator

or support technicians must determine what caused the error, attempt to recover any lost data,

and prevent the error from recurring. It is helpful if applications, the operating system, and other

system services record important events such as low-memory conditions or failed attempts to

access a disk. The system administrator can use the event log to help determine what conditions

caused the error and the context in which it occurred.

Windows supplies a standard user interface for viewing these event logs and a programming

interface for examining log entries.

An event, as defined in Windows, is any significant occurrence — whether in the operating

system or in an application — that requires users to be notified. Critical events are sent to the

user in the form of an immediate message on the screen. Other event notifications are written to

one of several event logs that record the information for future reference. Every event log entry is

classified into one of the following categories: errors, warnings, information, success audits, or

failure audits.

There are three event logs available by default:

 a System log, which tracks events that occur on system components (for example, a

problem with a driver);

 a Security log, which tracks security changes and possible breaches;

 an Application log, which tracks events that occur in a registered application.

We can create your own custom logs using the language features in the System.Diagnostics

namespace. And this log will be used for logging the SYSTEM.

