ProductName. Software Design Document

Ver: 2.1.5

The ProductNAME Project

Software Design Document

Version 2.1.5

Prepared By Reviewed by Approved By
Name SolovatSoft Rafael Soultanov, ClientName
Client Team Andrey Belyaev
Role Team Leader/ Project Leader/ Team Client
Team Member Leader/ Team Member
Signature
Date
Confidential © SolovatSoft, 2007 Page

1

ProductName. Software Design Document

Ver: 2.1.5

Revision History

Version

" Revision Date Description

2.0.1 21-Nov-2007 Added MSMQ proposal.
Added old configuration files migration proposal
Added COB table setup form

2.0.2 22-Nov-2007 Added functional description of Event Handling Subsystem
Added class description of Event Handling Subsystem
Core UML diagram and class description updated. EvensSource
classes are deleted.
It looks like we don’t need additional plug-in classes that will
implement EventSource interface to generate events described
above (can be found in previous versions of the document). We
can save and extract event source as an attribute of the event and
process it in suitable Event Handler. Method getEventSource will
return instance of an object that generated the Event. E.g.
getEventSource() method called from SYSTEM Event instance
will return an instance of SYSTEM class that generated the
Event.

2.0.3 24-Nov-2007 SYSTEM Core class deleted.
Carryable interface added.
Class relations reviewed.
Factory Layout class renamed to Factory
Added properties and methods for classes Factory, Route,
Segment, Station, SYSTEM
Core UML Diagram updated and class description added.

2.04 28-Nov-2007 Plug-in mechanism description added
Core API interfaces added

2.05 29-Nov-2007 Pathfinding algorithm description added
Class Command renamed to Waypoint

2.0.6 30-Nov-2007 Error handling algorithm description added
Object model related to pathfinding reviewed and redesigned
Class description for classes related to pathfinding added

2.0.7 01-Dec-2007 Added explanation of pathfindin algorithm selection

2.0.8 06-Dec-2007 Added new version of station setup form

2.0.9 09-Dec-2007 Minor changes performed in Ul section. “Close” buttons on forms
has been removed

2.1.0 12-Dec-2007 Ul description changed. All Ul windows was divided to dialogs
(modal) and forms. Main form design and layout concepts was
changed.

2.1.1 21-Dec-2007 Added method “FindPlugins” to EventDispatcher class.
Added Event class description.
Added Methods GetXXXByID to IFactory and Iroute interfaces
Added methods related to Station manipulation to route
interface

Confidential © SolovatSoft, 2007 Page 2

ProductName. Software Design Document Ver: 2.1.5

Version Revision Date | Description

Changed method name from “StartMoving” to “Start” in
ISYSTEM interface

Added Incoming and Outgoing segment manipulation to the
IStation interface

Added data exchange algorithm description to chapter “Plug-in
module mechanism”.

2.1.2 27-Dec-2007 Hardware and software requirements added

2.1.3 28-Dec-2007 Radio system module diagram added

2.1.4 29-Dec-2007 Rockwell Press System Diagram added
Inventory System Diagram added

2.15 17-Jan-2008 Deleted “Security Architecture” chapter

Radio Interface Module functional specification rewritten
Radio Interface Module UML diagram redesigned

Confidential © SolovatSoft, 2007 Page 3

ProductName. Software Design Document Ver: 2.1.5

Table of Contents

REVISION HISTOMY ...ttt ettt ettt et s e b et st e sneesteeneeeneebeaneenneas 2
TabIE OF CONTENLS ...ttt bbb eer et e e e 4
Overall SOftWAre ArCHITECIUIEovi et sre e anes 6
COre ArCHITECIUIE OVEIVIEW.......cuiiiiirieiiitiiti ittt sttt st sb e bbb ne e e 7
Event Handling SUBSYSIEM........c.oiiiiii e 7
FaCtory LayOut SUDSYSTEIMc.viiiieieiie ettt nre e enes 7
SYSTEM Handling SUDSYSIEMcviiiiiiiiiiiiieieeeee e 7
EXErnal MOTUIES OVEIVIEWciuiiiiiiieiieieiie sttt bbbt 7
PrESS SUDSYSTEIM ...ttt sttt sttt r e b e et esreenreeneennes 7
External Data SOUICES SUDSYSIEMcuiiieiicie et sre e anes 8
Rockwell Press System QUery INErfaceooooiiiiiiiiiii e 8
ADItrol QUETNY INTEITACEveeieicic et re e nre s 8
INVENEOry QUETY INTEITACEoouiiieiee bbb 8
RAdIO INtErface MOTUIEooiiiiiieieieee e bbb 8
SYSIEM REGUITEMENTS ...ttt et b et b et e bbbt e b e e e e 9
Operating System REQUITEIMENTSciveiieiieieeiie et e et ae e sre e re e e sreesreenneenes 9

O T o | SRS 9
LT T PP PP PRPOPRPPROT 9
Hardware REQUITEMENTSccuiiiiiiieieie ettt bbbt 9

(O 117 | AT 9
YT TP P PR 10
Additional Software REQUITEMENTSccueiveiiiiieieeie e 10

(O T o | SRRSO 10
LT T PRSPPI PPPR PR 10
Additional SysStem REQUITEMENTScoiiiiiiiiiteiii e 10
FuNnctional SPECITICAtIONcviiieie et sre e re e 11
SYSTEIM 0T, b et bbbt bt st e bt et b e bt nne s 11
Event Handling SUDSYSIEM.........ooiiiiei ettt sne s 12
Factory LayOout SUDSYSTEIM ..ottt 18

The SYSTEM Handling SUDSYStEMc.ooviiiiiiic e 20
Optimal Path FINAING AlGOTTtNMccoiiiiiiii s 22
RAIO INtErface MOGUIEooviieiiieieeee e 26
LiSt OF REQUITEIMENTSoviiiiitieiiee ettt b ettt 26
ATCITECTURAl OVEIVIBW ...ttt bbb 26
Rockwell Press System Interface MOAUIEooiiiiiiieii e 28
INVeNtory SYStEM IMOTUIEoviivieece ettt et e 29
Print SUDSYSTEM IMOQUIE. ..o e 30

L0 1Y | B TT: T [U PSSR 32
SYSTEIM 0Tttt b et s bttt b e et h bt et b e e nnnenne s 32
RAAIO INTEITACE ...ttt b et e re et 33
Rockwell Press SyStem INTEITACEc.ooiviiiieieiiceeeee e 34
PN SUDSYSIEIM ...ttt e b e s e et e e esb e e bt e e sbeeanaeenteennneenes 35
(LT) (7 o 7 T SRS 36
USEE INTEITACE FOMMS ...ttt e st e ne e b e 38

Confidential © SolovatSoft, 2007 Page 4

ProductName. Software Design Document Ver: 2.1.5

SYSTEM OVEIVIEW FOIMN ..ttt sttt ettt ene e sbe e beeneenneas 38
Y =T oI 0] 1 PP PR PR 39
SYSTEM StAtUS DIAIOG.cceeeueeieieieeteee e 40
Setup SYSTEM Path TOOIDA..........ccieiiiii s 41
SEALION SETUP FOIM ..ttt 43
MoVve Orders QUEUE FOMMoiii ettt ettt et be e sbe e s beesbeesabe e sbeesnbeenreeas 44
Paper ROIS OVEIVIEW FOIMoiiiiiie e 45
Pallet INSErtion DIalOgcoveiiiiiiieie et nne s 48
Staging Pallet DelIVErY FOIMcc.oiiiiiiiii e 49
Staging Pallet PICKUP FOIMoiuiiicc ettt nne s 50
Empty Pallet PICKUP FOIM ..o 51
Pallet STATUS FOMMN.....oiiiiieec ettt bbb 52
PresS SETUP DHAIOPc.ceveieiiiiiiee bbb 53
PIESS SETUP FOIM ..ttt et e e ba e e beeeanes 54
Press STALUS FOMM ...t st be et sae e beesnee s 55
Press Status DIalOgecviiiiiiee e nna s 56
EVENE LOGUING -ttt bbb bbbttt bbbttt 57

Confidential © SolovatSoft, 2007 Page 5

ProductName. Software Design Document Ver: 2.1.5

Overall Software Architecture

The System is planned as a system with plug-in support. The core module provides an SYSTEM
handling and plug-in modules add additional features to the software. This architecture makes
the SYSTEM highly extensible and configurable.

Inue 1tany System

Rockwel Press
ConelSaem

Akl lwentry
Switem

AbRrol e vy
SyEem e rac

Fockwe Il Press
Sytem ite race

[] ety Syrkm

Control Locaton
SyiEm

Factory Layont

Opemtar Imerfaoe Faotary Layout Editar

Figure 1. Overall System Architecture

Radiy hiterace Modvk fs—-

Adm hktator Mok

Ad mi nistratari me faos

I i © ExknalZyiems

The System will consist of following modules (Fig. 1):
System Core;

Inventory System;

Radio Interface Module;

Interface to External Systems;

Administration Module;

Abitrol Inventory Interface Module;

7. Rockwell Press System Interface Module;

Confidential © SolovatSoft, 2007 Page 6

ok wnE

ProductName. Software Design Document Ver: 2.1.5

Following applications will be developed as a stand-alone applications:
1. Factory Layout Editor
2. System Simulator

Core Architecture Overview

The Core will consist of following subsystems:
1. Event Handling
2. Factory Layout
3. SYSTEM Handling

Event Handling Subsystem

This subsystem dedicated to event handling and consist of following parts:
1. Event Queue —receives events, stores them, sorts by priority and sends to event dispatcher
2. Event Dispatcher — receives the event from Event Queue, define event type and send it to
according event handler
3. Event handlers implement business logic of event handling of each event type. The
handlers can call core modules via Core API. Thought business logic will be realized
according to Business function diagrams.

Factory Layout Subsystem

This subsystem contains and handles all the information related to factory. Factory layout
consists of Routes (wires) which are used by SYSTEM s as a controlling routes. Each route is
divided to Segments. Segment is a part of route between two stations. Each segment can contain
SYSTEM on itself. Each station can contain SYSTEM too.

SYSTEM Handling Subsystem

This subsystem is dedicated to assigning SYSTEM s to tasks and selecting the optimal route for
SYSTEM s. It’s mostly mathematical problem and it will be done by one class — Order Factory.
This class (maybe with some inner additional classes) will be designed to solve the problem of
selecting optimal route for SYSTEM and to generate order of commands for selected SYSTEM

External Modules Overview
The rest of the system functionality will be provided bu external plug-in modules.

Press Subsystem

This subsystem contains and handles all the information related to press factory. Factory Layout
contains Presses (and reels), rolls and pallets. All these objects interacts with SYSTEM s.
Factory Layout is updated time to time to represent last information about SYSTEM location,
press jobs, etc.

Confidential © SolovatSoft, 2007 Page 7

ProductName. Software Design Document Ver: 2.1.5

External Data sources Subsystem

All the data sources for system core are planned to be pluggable modules. They must implement
External DS interface.

Rockwell Press System Query Interface

According to documentation Rockwell Press System should be queried via sockets using special
protocol.

Abitrol Query Interface
Cannot be designed because of information lack.

Inventory Query Interface

Inventory subsystem is an “internal” database designed to store information about paper rolls and
pallets, its moving, using and wasting. This database is planned to be developed on MS SQL
Server and it can be queried via OLE DB interface.

Radio Interface Module

For communicating with SYSTEM s radio signals are used. This subsystem will consist of the
following classes:
1. RadioReceiver — sends and receives data to and from radio interface. This class is
designed to work with hardware layer
2. MessageTranslator — translates data from object form to bytes for sending (and vice
versa)
All the orders are from order factory should be translated by MessageTranslator and sent by
RadioReceiver. All the signals from the SYSTEM are translated to events and put to EventQueue
for processing.

Confidential © SolovatSoft, 2007 Page 8

ProductName. Software Design Document Ver: 2.1.5

System Requirements

The following system requirements are approximate and can be changed during system
development.

Operating System Requirements

Client

Client software (E.g. operator’s console) will work on following operating systems:
Microsoft® Windows® 98

Microsoft® Windows® 98 Second Edition

Microsoft® Windows® Millennium Edition

Microsoft® Windows NT® 4.0 Workstation with Service Pack 6.0a or later
Microsoft® Windows NT® 4.0 Server with Service Pack 6.0a or later
Microsoft® Windows® 2000 Professional

Microsoft® Windows® 2000 Server

Microsoft® Windows® 2000 Advanced Server

Microsoft® Windows® 2000 Datacenter Server

Microsoft® Windows® XP Home Edition

Microsoft® Windows® XP Professional

Microsoft® Windows® Server 2003 family

Server

Server software (System Core and additional plugins) will run on following operating systems:
Microsoft® Windows® 2000 Server with Service Pack 4.0

Microsoft® Windows® 2000 Advanced Server with Service Pack 4.0

Microsoft® Windows® 2000 Datacenter Server with Service Pack 4.0

Microsoft® Windows® Server 2003 family

Hardware Requirements

Hardware resources may need to be increased during production system testing. The following
requirements are approximate and based on Microsoft’s system requirements for running .NET
applications.

Client

Required Recommended Required RAM Recommended Hard Disk

processor processor RAM Space

Pentium 90 MHz* Pentium Il 450 MHz 32 MB* 96 MB or 200 MBytes
or faster higher

*QOr the minimum required by the operating system, whichever is higher.

Confidential © SolovatSoft, 2007 Page 9

ProductName. Software Design Document

Ver: 2.1.5

Server
Required Recommended

Required RAM Recommended Hard Disk
processor processor RAM

Space

Pentium 133 600 MHz Pentium 128 MB* 256 MB or 3 GBuytes for

MHz* processor, or an higher OS, .NET
AMD Opteron, AMD Framework and
Athlon64 or AMD Database
Athlon XP processor

*QOr the minimum required by the operating system, whichever is higher.

Additional Software Requirements

Client

Name Version

Microsoft Message Queue (Included)

2.0 and higher

Microsoft .NET Framework

1.1 (not tested on 2.0)

Server
Name

Version

Microsoft Message Queue (Included In Server versions of
Windows Operation Systems)

2.0 and higher

Microsoft .NET Framework

1.1 (not tested on 2.0)

Database Server and .NET Data Provider for it

Suppose it will be MSSQL
2000 Server or later

Additional System Requirements

e Network connection to connect from client terminals to server

e Support for TCP/IP protocol

e Active Directory infrastructure is highly recommended to use the advantages of

centralized security administration

Confidential © SolovatSoft, 2007

Page 10

ProductName. Software Design Document Ver: 2.1.5

Functional Specification

System Core

This module provides communication to the database, SYSTEM registers, station labels, pick
and drop points as defined by the specific image of a manufacturing company in memory
(factory layout), communication error handling among different modules, unsynchronized event
notification for some modules in the system, and handling of error conditions in the system.

The System Core (Core) is planned as a event-driven system. The main function of the core is to
dispatch messages coming from external modules (SYSTEM, Inventory, External Sensors...), by
send them for handling to according module. For example, if we get message “Roll is ready”
from sensor in roll preparation area, the message will be generated and sent to subsystem. This
architecture gives us asynchronous process execution, small core program size (everything is
done by modules) and ability to easy extend the system just by adding new message types for
different modules.

The Core itself is a single class (SYSTEM Core), that handles following subsystems:

1. Event Handling
2. Factory Layout
3. SYSTEM Handling

System Core is planned to be written as a Windows Service. All communications to the core will
use Event Handling subsystem as a communication channel.

Old configuration files — “Application Build File” and “Layout Builder File” (see “Specification
for old systems” document) will be distributed among database and Windows registry. Database
will contain following sections

1. Automatic battery change/charge maintenance (BCM) stations.
2. SYSTEM number, type mask, radio number, radio id
3. For each pick and/or drop location
Location name
Station number
Location type
Calculated minimum transfer time
Load present discrete number
Default pick priority
Default drop location tag
SYSTEM service type
I. Queue size default limit
4. For each station
a. stn station number
b. Necessary discrete
c. Signal Discrete
d. Push station
5. Extended Drop Location Tag Definition File

Confidential © SolovatSoft, 2007 Page 11

ST@ e oo o

ProductName. Software Design Document Ver: 2.1.5

6. COB tables

Registry will contain following values:
1. Company name, Installation location
2. Communications parameters
3. Move automatic priority age in minutes for each of the nine priorities
4. Host present flag
5. Discrete present flag

Event Handling Subsystem

This subsystem dedicated to event handling and consist of following parts:

Class Name Description

EventQueue Gets external events from Event Sources, manages them, sorts by
priority and redirects to EventDispatcher

EventDispatcher Takes messages from the queue and redirects them to an
according handler. This class will be realized as a service.

EventHandler Every event handler must implement this interface to be

registered in the system. Different event handlers for different
events can be plugged-in.

SYSTEM EventHandler Class that handles the events coming from the SYSTEM
ExternalSourceEventHandler | Class that handles the events coming from external sensors,
buttons, etc.

OperatorEventHandler Class that handles the events coming from operator console

ErrorHandler Class that handles the system errors

Event Abstract class that encapsulate an information about event
coming from the source

SYSTEM Event Class that represent an event coming from the SYSTEM

ExternalSourceEvent Class that represent an event coming from External Source
(sensor, button, etc)

OperatorEvent Class that represent an event coming from operator console

It is proposed that persistence layer will be developed to store event queue just in case of system
crash to restore it. Thought it will be a database tables.

Functional Description
Event handling system should do the following things
1. Event Queue gets the event from event source and store it.
2. Event Queue puts the event into right place (for example, error events should be handled
first).
3. Event Queue extracts the first event and sends it to EventDispatcher.
4. Event Dispatcher finds and loads an Event Handler that is able to handle given type of
the event.
5. Redirect the Event object to the Event Handler.

Confidential © SolovatSoft, 2007 Page 12

ProductName. Software Design Document Ver: 2.1.5

6. Event Handler encapsulates logic that handles the event and can call methods from the
other classes of the Core API.

Additional Requirements
1. Dynamically add event types
2. Dynamically add event handlers for event types
3. All these changes should be done without editing system source code

Solution

To satisfy the requirements of dynamic events and handlers addition the plug-in mechanism will
be used. Windows .dll files will be used to dynamically add new Event Types and Event
Handlers to the SYSTEM.

Plug-in module mechanism

The idea of plug-in modules is easy. Each module must implement interface EventHandler. This
interface has a method that registers link to Factory class in the plug-in’s body. The plug-in gets
an access to Factory class (and instances of other classes) through public Factory methods (see
System Core UML diagram, IFactory interface). For example, we can get a list of all SYSTEM s
in system by calling getSYSTEM s method. This method returns a collection of instances of
ISYSTEM interface. All API classes will implement corresponding interfaces, which will be
contained in single .dll library. Interfaces listed below will make Core API. They will be used for
additional event handlers writing. Methods of these interfaces will be the same as methods of the
classes with the same name.

IEventHandler
Event
IFactory
IRoute
ISegment
ISYSTEM
IStation
ICarryable

Detailed description of these interfaces given in the next chapters. The common scheme of plug-
in architecture sequence of actions looks like this:

1. Event Dispatcher service starts

2. It instantiates Factory, Route, Segment, SYSTEM , Station objects and their state (loads
it from database)

3. Then Event Dispatcher loads plug-in libraries and instantiates plug-in modules then
registers Factory class instance in each plug-in

4. All the plugins get the access to the SYSTEM instances, Routes, Stations only through
API.

5. Every plug-in can contain its own classes for work. For example Radio Interface plug-in
can contain classes for working with RS-232 interface.

6. When all the plugins loaded system starts.

Confidential © SolovatSoft, 2007 Page 13

ProductName. Software Design Document Ver: 2.1.5

7. When message arrives, EventDispatcher starts corresponding EventHandler (it can be
more than one handler to handle events) in separate thread. Message is handled
asynchronously.

8. If external module needs to communicate with Core (needs to get some information
FROM Core) it should create its own message queue. Event handler will place core
answers to this queue after handling the event.

9. If there is no corresponding handler, warning message is written to Event Log

10. If external module needs factory layout for working (e.g. Factory Map Module needs the
information about stations, SYSTEM s, etc.) it can be downloaded in XML format.
Direct core database access should be denied to provide security and extensible
architecture. The sample algorithm of Factory Map module may look like this:

a. System core loads event handler plugin for this module

b. User starts console on remote computer
c. Console send the event “Console Started” to Core

Cort

Cor
/

Console
w External Module

Event
Dispatcher

d. Core receives the event and redirects it to event handler

/COI’

Event

Dispatcher External Module

Confidential © SolovatSoft, 2007 Page 14

ProductName. Software Design Document

Ver: 2.1.5

Confidential

e. Event handler builds factory layout in XML form and sends it back to console
using private message queue. Each client has its own event queue for answers.

/COT

Event

< .
Dispatche xml version

10..>

External Module

</Factory

f. Console receives the layout and build its own object model (inherited from Core
APT interfaces) to represent it in “map” style.

/COI’

Event
Dispatcher

/-External Modulh

g. Console can send messages about map updates (e.g. during map editing), Handler
will update factory object model on server side

Station
Added

— 0

/-External Modulh

h. Core can send events to console about layout update from another modules (it
may be non-XML protocol), so object model on client side will be updated.

/COI’

Event
Dispatcher

© SolovatSoft, 2007

/-External Moduleﬁ

Page 15

ProductName. Software Design Document Ver: 2.1.5

Class and Interface Description

Only public methods and properties will be described. Classes that implement base interfaces (or
extend base classes) will not be described unless they have some specific properties or methods.

Event Queue Class

This class can be replaced with MSMQ, which provides the same functionality.

Method Name Description

putEvent(Event e) This method is called by external modules to add the
event to Event Queue. Parameter — instance of Event
Class

Event Dispatcher Class

Will contain reference to Factory class instance. When Event handler is added to Dispatcher, it
gets this reference for callbacks.

Method Name Description
dispatchEvent(Event e) This method is called by Event Queue when it

sends the Event to Dispatcher. Parameter —
instance of Event class
addEventHandler(EventHandler eh) Register new Event Handler in Dispatcher.
Event Handlers can be registered during system
work. Parameter — instance of EventHandler
class.

removeEventHandler(EventHandler eh) | Unregister an Event Handler. Parameter —
instance of Event Handler Class to be removed.
FindPlugins(String path) Searches plugins. Parameter — folder where
plugins located

IEventHandler Interface

Method Name ' Description

handleEvent(Event e) The method is called by Event Dispatcher to
handle the Event. Parameter — instance of Event
class

getEventType() Shows the type name of the Event that instance
of EventHandler can handle.

getDescription() Shows the short description of Event Handler

registerFactory() Used for registering Factory instance in plug-in

Event Class

Confidential © SolovatSoft, 2007 Page 16

ProductName. Software Design Document Ver: 2.1.5

This class is NOT abstract. Event class must be serializable to have a possibility to send events
via different transports (network, message service). Because of plug-in architecture NO Event
subclassses can be send to Core. All event generators from all sources must use Event class to
send events, so this class is sealed to prevent inheritance.

HIGH_PRIORITY High-priority message type constant
NORMAL_PRIORITY Normal-priority message type constant
LOW_PRIORITY Low-priority message type constant
Method Name ' Description

getType() Shows the type name of the Event
getBody() Returns event body in object form.
getSource() Returns event source of the event.
getPriority() Returns priority of an Event instance

MSMQ Proposal

But from the other side instead of writing event queue class Microsoft Message Queue (MSMQ)
mechanism can be used. This is an analogue of “mailboxes” used in previous version of the
system.

Messaging and messages provide a powerful and flexible mechanism for interprocess
communication between components of a server-based application. They have a number of
advantages over direct calls between components, including:

o Robustness — Messages are considerably less affected by component failures than direct
calls between components, because messages are stored in queues and remain there until
processed appropriately. Messaging is similar to transaction processing, because message
processing is guaranteed.

o Message prioritization — More urgent or important messages can be received before
less important messages, So you can guarantee adequate response time for critical
applications.

« Offline capabilities — Messages can be sent to temporary queues when they are sent
and remain that way until they are successfully delivered. Users can continue to perform
operations when access to the necessary queue is unavailable for whatever reason. In the
meantime, additional operations can proceed as if the message had already been
processed, because the message delivery is guaranteed when the network connection is
restored.

e Transactional messaging — You can couple several related messages into a single
transaction, ensuring that the messages are delivered in order, delivered only once, and
are successfully retrieved from their destination queue. If any errors occur, the entire
transaction is cancelled.

e Security — The Message Queuing technology on which the MessageQueue component
is based uses Windows security to secure access control, provide auditing, and encrypt
and authenticate the messages your component sends and receives.

But the system must meet the following requirements to develop MessageQueue components:
Confidential © SolovatSoft, 2007 Page 17

ProductName. Software Design Document Ver: 2.1.5

e To see queue information in Server Explorer or to access queues programmatically,
Message Queuing on your client computer must be installed.

Pros and cons for using MSMQ:
1. Development time can be decreased
2. Persistence, reliability and security problems are solved “automatically”
But
1. This infrastructure will tie our system to MS Windows Platform only.
2. Need some investigations about speed (can we guarantee particular delivery time?).
3. Need to buy Windows 2000 Server license.

Factory Layout Subsystem

This subsystem contains and handles all the information related to factory. Factory layout
consists of Routes (wires) which are used by SYSTEM s as a controlling routes. Each route is
divided to Segments. Segment is a part of route between two stations. Each segment can contain
SYSTEM on itself. Each station can contain SYSTEM too.

IFactory Interface that contain the information about factory layout and
objects in this layout

IRoute Route in factory layout with the dedicated frequency. Up to four
routes may be in factory

ISegment Interface that contain an information about segments (part of the
route between two stations)

ISYSTEM Represents the SYSTEM in core object model

IStation Interface represents station on the factory route. Implementing
class has three subclasses: DropLocation, PickLocation,
BaseStation

ICarryable All the object that can be carried by SYSTEM must implement
ICarryable interface for easy adapting SYSTEM for specific
requirements

Class and Interface description

Only public methods and properties will be described. Classes that implement base interfaces (or
extend base classes) will not be described unless they have some specific properties or methods.

IFactory Interface

Method Name Description

getRoutes() Return routes present in factory layout
getSYSTEM s() Return list of all SYSTEM s registered in factory
getSYSTEM Byld() Returns one SYSTEM instance by SYSTEM s ID.
registerSYSTEM () Registers an SYSTEM in factory
unregisterSYSTEM () Unregisters an SYSTEM in factory

Confidential © SolovatSoft, 2007 Page 18

ProductName. Software Design Document

Ver: 2.1.5

Method Name Description

addRoute()

Adds additional route in factory layout

removeRoute()

Removes route from factory layout

IRoute Interface

Method Name Description

getiD() Returns route number

getFrequency() Returns frequency value of the route

getSegments() Returns list of segments route consists of
addSegment() Adds a segment to route

removeSegment() Removes a segment from route

getStations() Returns stations array, which are located on the route
getStationByld() Returns one stations by its label

addStation() Adds station to the route

removeStation() Removes station from the route

ISegment Interface

Method Name Description

getLength() Returns the segment length

getStartStations() Returns a start station of the segment

getEndStation() Returns an end station of the segment

setStartStation() Sets the start station of the route

setEndStation() Sets the end station of the route

setRoute() Sets the route for a particular segment (may be needed
for route development tasks)

getRoute() Returns the reference to Route that a segment belongs to

getSYSTEM s() Returns a list of SYSTEM s that are on this route

ISYSTEM Interface

Method Name Description

getLoad() Returns an instance of Carryable — current load of an
SYSTEM

setLoad() “Loads” an SYSTEM with the instance of Carryable

getCurrentStation() Returns station that an SYSTEM moves to.

getld() Returns an SYSTEM number

getSegment() Returns the segment that an SYSTEM is moving along

getDropLocation() Returns a drop location assigned to an SYSTEM

setDropLocation()

Assigns drop location for an SYSTEM

getPickLocation()

Returns a pick location assigned to an SYSTEM

setPickLocation()

Assigns pick location to an SYSTEM

getParkLocation() Returns a park location of an SYSTEM
setParkLocation() Assigns a park location to an SYSTEM

getStatus() Returns SYSTEM current status

Confidential © SolovatSoft, 2007 Page

19

ProductName. Software Design Document

Ver: 2.1.5

Method Name Description

setStatus() Sets a particular status to an SYSTEM
getAction() Returns current action that an SYSTEM executes
getMoveNumber() Returns move number of an moving order

start() Starts SYSTEM

SYSTEM Class

Method Name Description

setOrder()

Protected. Sets the move order to an SYSTEM

getOrder()

Protected. Returns an SYSTEM ’s move order

IStation Interface

Method Name Description

getincomingSegments()

Returns a list of incoming segments for this station

getOutgoingSegments()

Returns a list of outgoming segments for this station

addIncomingSegment()

Adds incoming segment for the station

addOutgoingSegment()

Adds outgoing segment for the station

getSYSTEM ()

Returns an SYSTEM which resides on a station

getld Returns a station Id (label)

getStatus() Returns station status

setStatus() Assigns a status to a station

getLoad() Gets a Carryable instance — something that lays on a
location

setLoad() Puts a Carryable instance to a location

ICarryable Interface

Method Name Description

setSYSTEM ()

“Loads” Carryable to an SYSTEM

getSYSTEM ()

Returns the reference to an SYSTEM that carries this
object

setStation()

“Puts” the object to a station

getStation()

Returns the reference to a station that object lays on

The SYSTEM Handling Subsystem

This subsystem is dedicated to assigning SYSTEM s to tasks and selecting the optimal route for
SYSTEM s. It’s mostly mathematical problem and it will be done by one class — Order Factory.
This class (maybe with some inner additional classes) will be designed to solve the problem of
selecting optimal route for the SYSTEM and to generate order of commands for selected

SYSTEM .

Class Name Description

OrderFactory Class that generates orders and assigns them for SYSTEM s. It
Confidential © SolovatSoft, 2007 Page 20

ProductName. Software Design Document

Ver: 2.1.5

Class Name

Description

finds SYSTEM to execute, finds the shortest route, assigns order
for SYSTEM and puts it into OrderQueue — array of orders that
are waiting of execution, sort them by priority and call SYSTEM
class methods to assign order. OrderFactory is also contains an
array of pre-computed paths.

Path Set of segments from start station to goal station.

Order Set of waypoints (path) for SYSTEM and actions to execute on
each waypoint.

Action Single action for the SYSTEM to execute. Contains station where

action should be executed and action description in form “CAL
table id + modifier”. Each action has its state (waiting, executing
or completed), time to come and action duration. Used inside
Order class only.

Class and Interface description

Only public methods and properties will be described. Classes that implement base interfaces (or
extend base classes) will not be described unless they have some specific properties or methods.

OrderFactory Class

Method Name
setStart()

Description
Sets start point of route

setGoal()

Sets goal point of route

generateSYSTEM Order()

Generates the order for the SYSTEM if start and goal
points are set. After generation nullifies start and goal
points

getOrderQueue() This method allows to get an access to orders process
list

Path Class

Method Name Description

getSegments() Returns the segments that a path consists of

addSegment() Adds one segment to a path.

removeSegment() Removes a segment from a path.

getLength() Returns the length of a segment. This method does not
count collision resolve time.

getStations() Returns a list of a stations that belongs to a path

Order Class

Method Name
getSYSTEM ()

Description
Gets the SYSTEM this order assigned to.

Confidential

© SolovatSoft, 2007 Page 21

ProductName. Software Design Document Ver: 2.1.5

Method Name Description

SetSYSTEM () Protected. Assigns the order to SYSTEM. Cannot be
accessed from outside.

getPath() Returns a path assigned to the order.

getActions() Returns a list of actions that are assigned for this order.
Each action can be changed then.

addAction() Adds an action for a station. Only actions for stations in
the path can be added.

Action Class

Method Name Description

getCalld() Returns CAL table number that an action associated to

setModifier() Sets CAL modifier

getModifier() Returns CAL modifier for an action

getState() Returns action state (wait, executing, completed)

getStation() Returns station the action should be executed on

setStation() Protected. Assigns the station for the action

getDuration() Returns duration of an action

getComingTime() Returns a time when the SYSTEM will come to a station
to execute an action. Needed for collision prevention.

setComing Time Protected. Changes the SYSTEM’s coming time to a
station.

Optimal Path Finding Algorithm

Let’s make some assumptions

1. Each robot has an assigned goal, and each robot knows its start and goal positions;
Robots have a pre-defined path system;
Robot can walk out of path, but in pre-defined places only (on stations)
Robots cannot communicate to each other.
In case of collision robot stops and waits for commands

. Robot can stop and do some work only on stations
. All path are unidirectional
Robot does not have reverse speed

2
3
4
5.
6. All robots has a constant speed
-
8
9.
1

0. In the end of work robot goes to particular place for charging

The aim of optimization is to minimize the time for loaded SYSTEM moving. The aim of free
robot path optimization is to minimize collisions with loaded SYSTEM s. It can be not optimal
in terms of time, but it will minimize the time for loaded robots.

There are a number of algorithms for finding paths in dynamical environment: A*, D* and its
modifications, adapted genetic algorithm, ant-based pathfinding, neural networks can be adapted.

Confidential

© SolovatSoft, 2007 Page

22

ProductName. Software Design Document Ver: 2.1.5

Neural networks and ant-based pathfinding are not optimal for this problem, because they are too
interial. They need too much time for teaching (of course they can be teached using simulators)
and in case of Factory Layout changing they will make a big number of errors. Moreover, these
algorithms are quite hard to implement.

Genetic algorithm as also hard to implement on program language and they are less “natural”
from the poit of clearness.

A* and D* are heuristic algorithms and are not computationally expensive, but they are good for
partially unknown environments or big graphs with a big number of nodes and arcs.

Exact algorithms such as Dijkstra or Floyd algorithms computationally more expensive, but they
generate exact results for well-defined situations. In case of good implementation exact
algorithms can be quite fast (AMD K6-2 400MHz RAM 64M, graph nodes = 100000, arcs =
200000 finding the shortest path takes 0.4 seconds (AGraph library)), and they are easier to
implement than heuristic or neural algorithms. So, it is proposed than exact algorithms will be
used.

All SYSTEM s has a state, so has priorities (less number — higher priority)

1. Moving to drop

2. Moving to pick

3. Moving to charge

4. Moving to park
States

1. Parked

2. Picking

3. Dropping

4. Charging

are “static” states and do not have an impact to the pathfinding algorithm.

If SYSTEMSs has the same status, the SYSTEM that have got the task earlier, has a higher
priority. If the task was given simultaneously, the SYSTEM with the shortest rest of the way has
a higher priority. Prioritizing needs for deadlock prevention.

All the calculations will be made on digraph with weighted arcs (route segments) and nodes
(stations). The weight of arc is the time needed for the SYSTEM to go along the arc. The weight
of node is the time that SYSTEM should stay on this node. A weight of a node is a dynamic
value (depends on time), and a weight of an arc — static value.

As it can be understood from documentation, all of the routes are the routes from pick locations
to drop locations, from drop locations to service locations and from service locations to pick
locations. So the number of possible paths is a limited value. The first idea of increasing speed of
calculations is precomputing all “typical” paths and store them in memory (possibly in database
in case of very large number of paths). So, we have a limited number of paths stored in memory
with precomputed length (length mean time to go from start location to goal location in case of
other robots absence). All the paths in this path list are sorted by length.

Confidential © SolovatSoft, 2007 Page 23

ProductName. Software Design Document Ver: 2.1.5

Initially there are four sets of stations: P — pick locations, D — drop locations, S — service
(charge) locations, B — base locations. We add fifth set of location — | — intersections of
segments. Intersections are important, because they are used more intensively than base stations
and intersection is always a potential bottleneck in any traffic systems.

N M
The aim of the algorithm is minimizing value T(R;)=> C,+> N, , where T(R,)- time for

i=1 k=1

N M
SYSTEM number j. ZCi - the cost of the path without collisions (“static” cost), Z N, - the

i=1 k=1
time that SYSTEM must stay on Station number K. Let’s make the algorithm (without loss of
generalization) for delivering roll from pick location S1 to drop location G1. This algorithm uses

N
the “velocity-path” decomposition, “path” part (ZCi) is precomputed and “velocity” part

i=1
M
(> N,) should be calculated.
k

Set up start point and goal point (S1 € P and goal point G1 € D)

Select the shortest path from the precomputed paths

loop

Find the possible collisions. Collision occurs if two SYSTEM times are equal on the

same station.

5. If potential collision is identified the station before station on the route where collision is
identified gets a weight which equals the time the SYSTEM should stay to resolve
collision according to SYSTEM priorities.

6. If potential collision node (N¢oi € 1) try to set weight for previous node (N) on the route
that belongs to B set.

7. When all nodes are weighted, the cost of the path recalculated.

8. If selected path cost less than “static” path cost of the next precomputed path in a path list
(or it’s a last path) take this path as a shortest path and go to step 10

9. Else select next path from path list and go to step 3

10. Assign the path found to SYSTEM

'l
el

Data structures

For storing graph used in algorithm adjacency list will be used. Every node (station) has a link to
its neighbors, so we have description of the full factory layout. From the other side, each route
segment has a link to its start and end stations, so, the factory layout graph is stored as an array
of nodes (stations), array of arcs (segments) and as a adjacency list (each station has an array of
segments it belongs, so it has a list of near stations). Adjacency matrix may be used in case of
performance problem with the list. Now there’s no reason to use this representation because it
looks like there are more than 50% of the nodes have single incoming arc and single outgoing
arc, so the matrix will be strongly rarefied. Moreover, object representation gives more “natural”
way for manipulating graphs, so it will be easier to implement algorithms.

Error conditions handling

Confidential © SolovatSoft, 2007 Page 24

ProductName. Software Design Document Ver: 2.1.5

In case of SYSTEM breakdown the system will find all the SYSTEM s that using the segment
where breakdown occurs and stops them on the nearest station. Then the system will try to re-
plan paths of the SYSTEM s from the stop point to goal point. The order of the re-planning —
from the nearest to breakdown to the farthest. If there’s no alternative path the SYSTEM will be
stopped until broken SYSTEM will be taken off from the segment. During the breakdown
segment’s length is changing to infinity number to exclude it from path planning. When broken
SYSTEM will be moved off the path, the segment’s length will be changed to its previous value.
If some SYSTEM ’s were moving to longer paths it will be attempted to re-plan their paths to
redirect them to more optimal path. Dynamic path re-planning will be implemented using
Dijkstra algorithm.

The sequence of steps in case of error condition will look like this:

Define segment when error occurred

Mark all segments from breakdown backward to nearest crossing as locked

Create list of SYSTEM s that located on these segments

Stop these SYSTEMs.

For each SYSTEM in list starting from the nearest to breakdown

Modify the SYSTEM’s action list to move it as close as possible to broken SYSTEM

and stop. Mark the segment preceding to breakdown segment as locked.

Start the SYSTEM

If SYSTEM list is not empty move to step 5

For each SYSTEM located before locked part starting from the nearest to breakdown

0. Find alternative path to goal point using Dijkstra algorithm and static weights of the

segments

11. If the path found, recalculate velocity profile for the SYSTEM and go to step 10

12. Else modify the SYSTEM’s action list to move it as close as possible to broken SYSTEM
and stop. Mark the segment preceding to breakdown segment as locked.

13. Start the SYSTEM

14.1f SYSTEM list is not empty move to step 9

oukrwnE

A

The sequence of steps when broken SYSTEM taken off from the segment

Create list of SYSTEM s that may use this segment.

For each SYSTEM closest to the segment.

Find path that is more short than current.

If path found calculate velocity profile.

If the path still has smaller weight reassign SYSTEM to this path.
Else let the SYSTEM stay on previous path.

ook wdE

Requirement to recalculation algorithm: total recalculation time for one SYSTEM must be less
than 0,5 seconds.

Task assignment algorithm
When the system gets a task it should execute the following sequence of actions:

1. Create a list of SYSTEM s which are not carrying any load and not going for charging.
Confidential © SolovatSoft, 2007 Page 25

ProductName. Software Design Document Ver: 2.1.5

2. For all free SYSTEM s find the closest SYSTEM for executing the task. First try to find
if the situation is “standard” (precomputed), else generate the route using Dijkstra
algorithm.

3. Then velocity profile for the SYSTEM that has the shortest static route is generated.

4. The shortest route is selected from all routes found on step 2.

5. If generated route (with velocity profile) is still the shortest then the SYSTEM is selected
for task execution

6. Else select the shortest route without velocity profile and go to step 3

7. SYSTEM assigned to the path that have been generated then starts moving

8. If during the SYSTEM’s moving another SYSTEM becomes free (and it does not needed
to be charged), the system calculates if it is closer to task point than currently assigned
SYSTEM.

9. If yes, the path for new SYSTEM generated (with velocity profile generation).

10. If this path is shorter than currently SYSTEM has, the task is assigned to new SYSTEM

11. Previous SYSTEM becomes free and goes to parking point (or can be assigned to
another task)

So, it is proposed to use exact Dijkstra algorithm for computing the shortest path and a number
expert rules for collision and error conditions resolving.

Radio Interface Module

Module responsible for communication with radio subsystem. This module is responsible for
support of constant stream of information to be sent and received using the radio interfaces. Will
notify the core system module when completing tasks for sending messages. It will be
programmed to scan the condition of the main modules of the system automatically (if has no
first priority tasks for execution). This module is responsible for reducing waiting time and all
radio interface activity.

List of Requirements

1. Communication errors handling
2. lsolation from low-level interface (RS-232 or others)
3. Make status poll automatically

Architectural Overview

The module can be divided to two parts: a Radio Receiver Client and a Radio Module Event
handler. The Radio Receiver Client instances located on communication hosts, there can be up to
four Radio Receiver Client instances (according to old system specification). The Radio Module
Event Handler is designed as core plug-in and resides on host where System Core located.

The Radio Receiver Client (Just “Client” from here) just sends and receives arrays of bytes. It
“knows” how to send command to particular SYSTEM in terms of communicating protocol
used. Each instance of the Client has a list of SYSTEM s it controls. Each SYSTEM in list has a
command queue. If there are no commands come from System Core, the Client polls SYSTEM s
automatically by generating a command and putting it into command queue for particular
SYSTEM and sends received status reports to the Core. All instances of the Client use one
(common) message queue to send events to the System Core. Each Client instance use its own

Confidential © SolovatSoft, 2007 Page 26

ProductName. Software Design Document Ver: 2.1.5

message queue to get byte array to send from the Core. All byte arrays are sent via RS-232
interface. When a message arrives, the Client creates message and puts it to MSMQ. The
message contains encoded byte array.

The Radio Module Event Handler, from the other side, receives messages from all Clients,
decodes them and updates factory layout according to the status received. It also contains a list of
radio Clients and information about which SYSTEM is connected to each Radio Module Client.
If another module starts SYSTEM (e.g. SYSTEM can be started from Operator Interface) or
changes its status, it notifies the Core by creating event and putting it to MSMQ. Radio Module
Event Handler gets the notification and generates command for SYSTEM. Then this command is
“wrapped” into message and put to the Client message Queue.

Ewvert handler works
with Factany Lawout
I{,_System Caore

object on sarversde, ™y
encodes commands
for AG and decodes :
AGN's responces Fag!l'lrgl';:ll_:_ll'lg
Fadio hlodule
Ewerit Handler
E 3
Factory Lawout
Recaived
L
Thiz software sends heszage
comimands to AG
and receives
an=w ers from it. EﬂU‘tg-:-ung o—
Al . essage
Client "now =" how to Dispatcher
locgte particular AGYW
and send the)
(T cormmand to it - ! A
Recziw
ﬁ@"&i

Custgaing

age=t
Radio Recsiver hcoming
Client s508

S Incoming

Commands Microzot
Message Gusue

Encoded Command I:I:ﬁ}

Fadio Reciewer Host

Encoded messages
are sent to MSMQ 1o
Systern Core

Commands (ke
sequences] are send
wig adio interface

Class Name Description
RadioReceiver Class responsible for sending and receiving information via radio
channel. It works with hardware. There can be up to four

Confidential © SolovatSoft, 2007 Page 27

ProductName. Software Design Document Ver: 2.1.5

RadioReceiver instances to service up to four radios.
MessageTranslator Class translates messages from object representation to byte
arrays.
RadioHandler Plug-in class that handles events coming from RadioReceiver and
sends commands to SYSTEM via the same RadioReceiver.

Class and Interface description

Only public methods and properties will be described. Classes that implement base interfaces (or
extend base classes) will not be described unless they have some specific properties or methods.

RadioReceiver Class

Method Name Description
SendBytes() Sends byte array to particular SYSTEM
ReceiveBytes() Receives byte array from radio interface

MessageTranslator Class

Method Name Description
TranslateOrder() Translates order for SYSTEM to byte array
TranslateEvent() Translates incoming byte arrays to system events

MessageTranslator Class
This class implements leventHandler interface, so their descriptions are the same.

Rockwell Press System Interface Module

According to documentation Rockwell Press System should be queried via sockets. When it is
needed to start press job, QueryData() method of class RockwellDS is called from the core, then
queryPress() method is called. This method generates query message, send it to press and
receives an answer. Then results are returned as a result of QueryData() method execution.

Confidential © SolovatSoft, 2007 Page 28

ProductName. Software Design Document Ver: 2.1.5

Fochwell Press

Ewert Hardler
Interacts with factory
Iay:-l..rtb:u stat AGY ~—Syetem Core -.\
miouing
Pathinding
Fadandl Press Syetem
Cortral Swetem
Bwert Hander Ewerit Handler
queries PrirtJew Sereer
to receive needed information 1 -
i Factory Lawout
Receivwed
hiez=age]
Ewertt
4| Dispaticher
A ! ~
Racaiuwe
seages—— | Press Opergtor
FRINTVIEW Intertace
PC-Based k=3
Server
Press Opergar .
Conzole gererates Ewents ,ﬁ‘“‘*«.\ h'x",-"ng
bttt Fre - "
EQETE ut Press \-\b/
Microsoft
hMeszage CQueus
Class Name Description
RockwellPress Class that represents press to be queried. Each press has links to
two instances of RockwellServer class — primary and backup.
RockwellServer This class contains information about servers: IP address, name,
etc
RockwellMessage This class represents message to be send (and received) to (and
from) rockwell server.

Inventory System Module

Inventory system object model contains of classes represented in factory layout model. All these
classes will be mapped to Inventory Data Model described in corresponding document.

Confidential © SolovatSoft, 2007 Page 29

ProductName. Software Design Document Ver: 2.1.5

mentony Opeator Application can be

Inventol))
Coabist e B vy e o
mentony Changes
] Core also interacts with Applicaion
using hiShIl
I,d.—S‘g.n*stnan'u Care -,
1
Signats Pathfindng
comes 'i'-:im E;T':;g Syetem
extema P entory 5
e o T
barzode readers,]
=118 I
1
Ewerits fom and to Dtgoing -
operator nterace hiessages Irreerkor® Factary Lawout
{ to heentony
#plication Reaczivwed
Sensor Meszage '
Microzot
Message Cuele
et
hmnin;;;@ Fecai - Dispatcher
=g . A
Class Name Entity Name
Press Presses
Reel Reels
Roll Rolls, Roll_Categories, Roll_Qualities,
Manufacturers, Paper_Colors
Link between Reel and Roll Roll_On_Reels
Pallet Pallets, Pallet status, Statuses, Advertisers,
Rack_Locations

Insert Inserts

Print Subsystem Module

Inventory system object model contains of classes represented in factory layout model. All these
classes will be mapped to Inventory Data Model described in corresponding document.

Class Name = ANET

PressJob Contains the information about rolls needed for
press job

PressJobinfo Contains the Reel-Roll information about how
many rolls needed on which press reel.

Roll Contains the information about press rolls

Pallet Class represents pallets in the system. Pallets are
used in press job.

Insert Each pallet contains a number of inserts. This

Confidential © SolovatSoft, 2007 Page 30

ProductName. Software Design Document Ver: 2.1.5

Class Name Entity Name

class represent one insert instance

Press Class represent press in factory

Reel This class represents reels on press.

PressJob Contains the information about rolls needed for
press job

PressJobinfo Contains the Reel-Roll information about how
many rolls needed on which press reel.

Roll Contains the information about press rolls

Pallet Class represents pallets in the system. Pallets are
used in press job.

Confidential © SolovatSoft, 2007 Page 31

ProductName. Software Design Document

Ver: 2.1.5

UML Diagrams

System Core

0 kb e MO g
it asho) The bt
o A
T b et
* pmryloda | e
v e (o
Lo | | 1 e L] s
® chiwbelie | | M Exterved (hnts s s o
R b i
Omwrionys arve rewfas b anie | oo LU e (O B G, B
. i ot 11 s Tow, ol by oty
* e Tuls | | »
0N | |
® chbebinta | | Catarrals
= - S LA Gt b ta e Dot
S zaleal | o—,wplnn-- -
) S reeOea |) i o -ty B osdp
et} - T Whaitiry bperiayd A it T b of b i)
* LedaaOwa | | » iy |) ' © rrettrrtiesie | | . ——
€ ORI (|
ke g Patory et e
- [rers Aok sl
,l,",'n“ :n s anwte of il o
& ortdiaa i | e Hoveo: © OOper a3 henbey
* lgaaaOae | |
* D | | p * iDwrytn |)
o rviven | | \ag B e il
$hoam - o . gty
Epdirinde s 1y i 51
o nes Wil L Pvaanc -
oe50 | |
corwis of b4 A, e
o QST ¢
* aatayeer
* revevciagyet | | = -
e 4t e e)
e s ot s it PRI O
Wy Swey i K% Cre bty Moy St it
1 b ol e wy L 0 “"-‘":"-' - - ¢ eraintacreerd | | A BETEt rerrree—
it A e s ol by i Toer O it benfor -
el e ot o sy & g - ' -t - * harcieent | |
W B e e o sk wil * tachdart ® Dt i
smarn N7 g ade Loots a - . EartTent) . ratinn | |
- By ol o b e y . . M)
A oy & O yiens ..:‘,.L“?‘.".",.. \ - TREROTRTYL)
R
. Ll
L . ¢)
cormreesks fm WiV Oty :ﬁ:ﬂﬁ"-;) :alv-:':--" - - :
« e SnSade by~ b s B Wemruetierdbr
* e | | o gt) s v i)
:ﬂf:ﬁ"' 1 . wiEom | | waibe o gEarcisom i |
»e2at| | - OB » gt aciry |)
— G
L L
- Pt |) roney fewt e o
« gpeactarn | | ke
- SpeSmal)
» wtishe |)
- o CrLxasn |)
— * welzrch oo | |
-
- - -
i -
5 -
3 - 3 - oty il |) Ve gt U Uttt vt ®
% oY = * Dl etin | | WATE GG *oanat | |
! - - getid |) . omane |
Ay -y) tarert | | * oefrarmy | |
.,‘:,. J :'W"‘ll” Pt i) :wuvnu :;:_._1‘:.:‘;. S guTemi |
" wicihe vt .',‘ 2 - . okTiow | |
o e ~Sng = atators | | . QS ANLOORN | | — .
 durston | kg * Goarvw e ten |) - L] WicET—
va il Sl () -l |
ef e T wwetoat|] Yo o | |
.:v(w;g- " - * TR | | - EElton: |
s [(TN S R . 1
oeaws | | S o 1 et | |
. gt | | - o - i
" 200 (- _;‘;’:"" = -
* QOrdon |) om
- eZoreryTivm | | _ ke -
s el
— -
1
At { N .

Confidential

© SolovatSoft, 2007

32

Page

ProductName. Software Design Document

Ver: 2.1.5

Radio Interface

OrderFactory generates orders,
assigns them to AGVs and call
SendMociule for sending

o
a
a

a

{5 OrderFactory
paths @ Path

sender ; SendMocule
start @ [Station

goal ; [Station

@ generateAGVOrder ()
@ getOrderQuele ()

@ setGoal ()

@ setStart)

wLigen

Translates ohiject
messages to byte arrays

(2 MessageTranslator

@ translateCrcer ()
@ translateEvent () 4

-mt

LS8

- PrderQueus

[= B = R = |

&
L

{5 Order
path : Path
HIGH_PRIOCRITY . int
MORMAL PRIORITY :int
LOW _PRIORITY : int
agy . AGY
actions : Action
setAGY ()

@ getiagy ()
@ getPath ()
@ getictions ()
@ addaction ()

Confidential

© SolovatSoft, 2007

RadioReceiver works
with hardware
interface, sends orcers
to AGYs and receives
events from them,
translate and put
events to EventQueue

Sends and receives
messages from MSMO) on
System Core Host

{3 RadioReceiver
{3 RadioHandler

@ sencBytes ()
@ getDescription () @ receiveBytes [)
@ getEventType ()
@ handleEvent ()

@ registerFactory ()

Orders are sent to
SendMocule for
sending to AGY

Page

33

ProductName. Software Design Document

Ver: 2.1.5

Rockwell Press System Interface

{2 RockwellDS

@ queryData ()
@ insertData ()
@ updateData ()
@ deleteData ()
@ queryPress ()

| JSEe

*
Jresses
{3 RockwellPress

- Jrimary
- bagup

1

{2 RockwellServer

o IP ; Inet4Address

o hostMame ; String

o ServiceMamea : String
o portMumber ;int

@ sencdMessage ()

@ receiveMessage [)

D SR

Confidential

{2 RockwellMessage
o messagelength : byte
o messageData : byte
o messageBocly | byte

© SolovatSoft, 2007

Page

34

ProductName. Software Design Document Ver: 2.1.5

Print Subsystem

o o o g

(3 Insert

o [umberCfPages @ int
o description ; String

(= Pallet - inserts stock: @ Stiing

aclvertiser : String
number ; int
Lsername ; string
shpmentld @ int

1-Imcation
(2 Station - jobId
o segments ; Segment
o id ; String 1
o agy ;. AGY (=) PressJob
o status @ String © Press
o load ; ICarryable o jd :int @ generateRollRequest ()
@ getStatus [) o name : String
@ setStatus () 1
@ getSegments () - [ress _
@ getagy () 1 - press
@ getld () * jobInfo
@ getload ()
@ setlLoad () {3 PressJobInfo
* o rollsToDeliver ; int
- reels
{2 Reel 1
o jd 1int - regl
o name : String
1
- el
1- 100 Type
{3 Roll
-rall | ® barcode : Stiing
I o diameter ; double
o manufacturer @ String
o color ; String
o position ; String
o offset : String
o category @ String
o guality @ String
o expirationDiameter ; double

Confidential

© SolovatSoft, 2007 Page

35

ProductName. Software Design Document Ver: 2.1.5

User Interface

The interface of the new SYSTEM C system will utilize all the features of rich windows
interface: drop-down lists with spellchecking, drag-and-drop mechanism, customizable toolbars,
hot keys, etc. Supposed that there will be map representation of system status, and user will get
status of any object on the map (SYSTEM , Station, Press) just by clicking on it. Status of each
object will also be highlighted by color for easier information perception. But from the other
hand there will be a set of keyboard-optimized forms for quick and mass input of data.

Some forms will reproduce old console forms (user will not be needed to restudy), but even these
forms will utilize all Windows Ul features.

This application will use “Project” (according to Microsoft’s “Official Guidelines for User
Interface Developers and Designers”) window management model. It will be main window with
menu bar and toolbars and a number of independent windows that can be managed
independently. Each window will have its own button on windows taskbar

Zyrkem rmenkyy Fress Ssoudp Help
Pl H xR
Pl @ &= @

Factory bp [8]i=1]ES]

o
= =T

CusTenk 5 Eabion: L1k, Push SEalion 3%

Cusmonk Desinabion: =5 Comim. refnes: o

Coal station: oal Comim. emors: o

Tabioos: |

DFaRoceed: 0112 BF 1011 BB 2D 32 1E FF B2
Eeasibch: AUTO Licaded: Yex Baffory: OK Disbanoe Q0000 2%
L 1
- =
.:l
| ey

Confidential © SolovatSoft, 2007 Page 36

ProductName. Software Design Document

Ver: 2.1.5

Menu structure was developed according to business process description and forms in menu will

be developed to help users to do their routine operations more efficiently.

User interface will interact with the SYSTEM via Events to isolate interface implementation
from system. The main reason to do this is isolation of Ul implementation from system
implementation. It gives us an ability to use hardware terminals or Ul implemented under

different OS.

Confidential © SolovatSoft, 2007

Page

37

ProductName. Software Design Document Ver: 2.1.5

User Interface Forms

System Overview Form

This form represents system status in old, table-view form. By clicking on SYSTEM or Move
Order context-depended actions (e.g. SYSTEM disabling or Move Order removal) can be
executed.

Syshem O veryiew EE|E|

55N Mo Skation estinat ion Skabus Adion 2t o L o=

Mo v Crdsre Gusus

o

Dlabk
Dek e
Rearsgn
Froperles

Confidential © SolovatSoft, 2007 Page 38

ProductName. Software Design Document

Ver: 2.1.5

Map Form

This represents system status in map-style form. SYSTEM status is represented by color (gray —
moving to load, blue — loaded, red - down). If SYSTEM is selected its route is highlighted on
factory map. Among properties the form gives the ability to execute actions for each object via
context menu. For example, right-clicking on SYSTEM we will get following list of possible

actions:

Enable

Disable

Remove from path
Go to charger
View status

View move orders

I

_;& Dlzabk a0
Arrlgn Task R

—
-| Froper les e

FREZSZ

Confidential © SolovatSoft, 2007

Page

39

ProductName. Software Design Document Ver: 2.1.5

SYSTEM Status Dialog

This dialog shows SYSTEM status and gives the ability to change the status for the privileged
person.

Marre: A 1

Skatus: |Eneb|ed] Charging: Mo

Action: Ready Current: 000000
Mo ac Tatal: 00:00:00

Mowe # 920 Pick: 122 Drop: 882 Park: 011

Pick: 123 Lewel: 1 Drop: 882 Lewel: 1 Padk: 011

Ricurte

Last station: 116 Bl ocking &3 1]

Qurrent station : 117 Push Station : 225

Qutrent Destin ation ! 156 Cornrm, retres: a

Goal station: 011 oM, Brrors | i

Stakions: NS R NN RGN N N N e

[rata Received: 01 1A BF1011 BB20 2C 1E FF E4

Keyswitch: AT Loaded: Yes Batteny; Ok Distance: 000125

Save] | Jaze

Confidential © SolovatSoft, 2007 Page 40

ProductName. Software Design Document Ver: 2.1.5

Setup SYSTEM Path Toolbar

This purpose of this toolbar is to define SYSTEM’s pick, drop and park location. The toolbar
will be shown on the top of the map form and user will be able to select SYSTEM and stations.

Factory Map

- AGV lagva 1 * Park Location

Confidential © SolovatSoft, 2007 Page 41

ProductName. Software Design Document Ver: 2.1.5

Station Setup Dialog
This dialog shows Station status and properties and gives the ability to change the status or some
properties for the privileged person.

Station Setup - Station 557 =T

Marne: 557 Defaul map: 1

Status: Enabled w | Meszesary 1

Lo aded: YES Stop: YES '
AEY at S ation: 2 Mowes Cueued 11

Fick [Jrop w Park
COB Tables Setup
Station 102 | Station 103 | PRick

Locked?
CAL Table Mo Madifier Drescription
2 g0 Go Forweard 500 cm
2
25
2 30

Save Claze

Confidential © SolovatSoft, 2007 Page 42

ProductName. Software Design Document Ver: 2.1.5

Station Setup Form
The Station Setup form is used during system maintains to change station properties.

Station Setup - Station 557

S (=1ET

Ctation I A Marne: Default map: 1
=56 Sk atus: Enabled | Messesany 1
§57 Loaded YES =4 WES
=101 padedi oR :I“'
Si4 Ak ak Sration: E] Mowes Queusd: 11
] Pick: | | Drop |] Park
COB Table=s Setup
Sration 102 | Station 103 | Pick
CAL Table Mo odifier Descrption
z Ean G Forward 500
Meighbor S ations Locked = i il
10z =l —
10z
| z 30
Siyzhern Status: AT
Confidential © SolovatSoft, 2007 Page

ProductName. Software Design Document

Ver: 2.1.5

Move Orders Queue Form

This form shows the move orders queue with possibility to find, filter, sort and delete move
orders. All Windows Ul features will be enabled: sorting by any column, moving columns using

mouse and select columns to show.

Move Orders Queue

[el Pick-L%WL Crop - AL Receivad

Dispatch

Fic ked

Siyztern Status: AT

Confidential © SolovatSoft, 2007

Page

44

ProductName. Software Design Document Ver: 2.1.5

Paper Rolls Overview Form

This form displays information about all rolls used in system. This form gives the ability to find
particular paper roll, to sort and filter rolls list and to waste particular roll. Roll Status can be
color-coded. User can define set of columns in the left part of the form.

Papen Rolls FFx
Foll o | SipHe | Fans | # Rl Iforrnation Roll Statis
EERRIEE) 7125 | Laydown Rall Facking: i In Laydown Storage

Rl Shiprent Mo: 2123 Rack Marnber: e

Last Rall: 11 Date Placed: 11-h 12005

Fll Width: 1= Cutrent Ciameter; 122

Wind: 1 Weighk: 100

Iritid Cianeter: 122

Buasiz Weight: L

Roll Ty Green

Tritid Weight: 150

w

SigternStaus: AMD

rone ot LS
Rl TG [Shp 16 | S ~ — Rl Ffomnaion Rl St=tis
1123 173 | Press Run Rell Packing: i Lkzd In Fress Run

Ral Shiprrent Mb: 2123 Press Marnber: 3

Last Rll: 11 Fed Mirrber: 1

Rall Whdth: 1z | PresbbI: 1

Wind:) Foll Poskion: EMTER:

Foll Cffsat:]

Trtid Diaraters 12 b Placeds 11MOV 12405

Basziz Weight: 2m

Rl Type: Grean

Tritid Waight : 150

w

SigternShaus: AMD

Confidential © SolovatSoft, 2007 Page 45

ProductName. Software Design Document

Ver: 2.1.5

Paper Rolls ElIFx

Rl Mo | =hp M6

Status

1123 2122

Transported

.

Rl Imnfomnaion

Roll Padiirg: 1
Faall Shiprnent Mo 2123
Last Rall: 11
Foll Widh: 123
Infird: 1

Initid Ciareter; 122
Bagiz lkeight: 200
Rill Type: Green
Tnitid Weight: 150

Rl | Statue
Transported by A5

A3 Marnber: 123
Rack MHumber: 122
Fress tumnbar: 122
Reel Murrber: 1
Fress Job 1T 1

SigternStaus: AMD

Confidential

© SolovatSoft, 2007

Page

46

ProductName. Software Design Document Ver: 2.1.5

Vertical Roll Insertion Dialog

This dialog is dedicated to person on Roll Preparation Station. When the roll is moved to the roll
preparation station the operator will scan the bar code label to get the roll number. The new SYSTEM
S will use this number to retrieve the roll information from the file containing the Arbitral inventory
data manifest and fills in the remaining data fields. This form gives the ability to reject roll and write
reject reason.

it o 17173 O

Roll reject comment:

Location: |'3":|1 vl

Rall Iformation

Roll Murnbar: | 12 17635
Roll Packing: 1124

Roll Shipment Mo: | 1124

I
I
|
Lazt Rall; | 1124 |
Reoll Width : k! | . . b
Wind: |123 | [a4 l I Cancel
Driameter: | 200 |
Basis Weight: 200 |
Rall Type: |GREEN |
W aight: 201 |
| Sae | | Feject |

Dividing form to two windows will prevent from accidental rejecting roll. Reject comment is a
mandatory field.

Confidential © SolovatSoft, 2007 Page 47

ProductName. Software Design Document Ver: 2.1.5

Pallet Insertion Dialog

The operator uses this Dialog to enter the pallet information when it is first received and creates
the initial entry into the Pallet Inventory Data Base for this specific pallet.

The new system will utilize features such as look ahead spelling, selection from pull down boxes
and screen population from the data base when possible. It is decided to leave this form design as
in the previous version of the system for easier of use.

Fallet Loc ation: ool b

Advettiser: Big Comnp any vl Mo, of Pages: 1500

Inzert Crescription: 100 Inzer Type! | iz -
Taotal Grvaf Insarts: 100 Inzert Stack: 100

Tatal Mo af Pallats: Lkar ICx Lker
Pallet Cw of Inzerts; | &
b 10

Pallet Murnber:

[soe | [dos

Siyzkermn Status AT

Confidential © SolovatSoft, 2007 Page 48

ProductName. Software Design Document

Ver: 2.1.5

Staging Pallet Delivery Form

The form will allow the operator to select a staging location and enter (or select from drop-down

list) the job number for each location.

The SYSTEM S will display all advertisers’ records for each Job ID with the Insert description.
The operator can select the desired advertisers and the system will display the number of inserts,

insert type, and insert stock from the Data Base.

The operator can confirm the delivery request and the SYSTEM S will create a transport order

for that pallet.

Staping Pallet Delwery

Staging Location A lob ID
SER 12EE242 LS
597
Advertis ers Inzert Des crip tion

5101

514

Syztermn Status Manual

(=
Fallet Information
Chy of Ins erts: 10
Murnber of Pages: 1200
Inzert Type: iz
Insert Stock: 1

Confidential © SolovatSoft, 2007

Page

49

ProductName. Software Design Document

Ver: 2.1.5

Staging Pallet Pickup Form

If some pallets are unused the operator will use the staging pallet pickup form to notify the
system to pick up the unused pallets. The system will display the staging location and the
operator can select from pull down lists or use partial spelling to display the potential pallets to
be retrieved (from the pallets delivered earlier that day) . Once the system has enough
information it will populate the screen with the fields so the operator can confirm that this is the
pallet for pickup. This confirmation initiates the transport order from the SYSTEM S control

system.

Staging Pallet Pickup =]

Fallet Fformation
Adwertiser:

Ctyof Inserts:
Murnber of Pages:
Inzert Type:

Inzett Stock:

Inz ert Description

Cne Adw
10

1200

4

Al

The lang
description of the
insett

Fickup

Staging Location ~ Pallets ~
=1 L &
57 12445
=101 21312
514 22445
L¥ L
System Status Manual

Confidential © SolovatSoft, 2007

Page

50

ProductName. Software Design Document

Ver: 2.1.5

Empty Pallet Pickup Form

This form provides a list of the Staging locations (PPO1 through PP08); the operator will click on
the locations that have empty pallets to be picked up. Operator can see the information about
each pallet, if needed. This action will initiate a transport order by the SYSTEM S to pick up all

empty pallets and transport to the Waste Area.

EmptyPaliet Pickup EIE|E|

Fallet information
&dwertiser

Crwaf Inserts:
Murnber of Pages:
Inzert Typa:

Insert Sack:

Inz ett Descriplion

One Ady

1200
402
Al

The lang
description of the
inset

s b

Staging Location L Ernpty Pallets | #
=Bk EE43
57 12445
s101 21312
) 22445
e v
Systemn Status Manual

Confidential

© SolovatSoft, 2007

Page

51

ProductName. Software Design Document

Ver: 2.1.5

Pallet Status Form

This form will allow the operator to select and display the status of the pallets by location or type
of pallet. This screen will display all pallets requests made during a specified period (default last
24 hours). Latest Insertion request will be displayed first. Each pallet will be colored coded
based on the status of the pallet. The most important 4 fields (to be defined) will be displayed in
the list and the user can click on the Insertion Request for example to display all the information

in the Pallet Data base associated with that record. The display types could be:

e Pallet in Receiving Rack location

Pallet Mo

Pallat type

Advertizer

Status

221122

2122

Test

Transit

Siystern Status AT

o

Fallet IFformiation
Skatus:

Ty of Insarts:
Murnber of Pages:
Inzert Type!
Insert Stock:

Inzert Cescription:

Pallet in transit from Receiving Rack to Pallet storage
Pallet in Storage
Pallet in transit from storage to staging location
Pallets at staging

Pallet Status =7

Transit fram
storage ta
ztaging

0
1200
4
Al

The long
description of the
insert

Confidential

© SolovatSoft, 2007

Page

52

ProductName. Software Design Document Ver: 2.1.5

Press Setup Dialog

The Press Setup Dialog is used to specify the type of rolls to be delivered to a reel stand for a
specified press run, or to modify an existing setup.

Press Setup - Press 1 E]g

Press ID: Press 1

Job ID: 199287

Reel 1 | Reel2 | Reel3 | Reel4 |

Width: Manufacturer Code:
Diameter: m Basis Weight: 200

Type: W Ship No.: 14
Quantity:

Save Close

The form is planned for keyboard input. Navigation will look like this: Job ID — Reel 1 tab —
Width — M. Code — Diameter — (so on from left to right up to down) — Reel 2 tab — (havigation
like “Reel 17).

Confidential © SolovatSoft, 2007 Page 53

ProductName. Software Design Document Ver: 2.1.5

Press Setup Form

The Press Setup Form is used to specify the type of rolls to be delivered to a reel stand for a specified
press run, or to modify an existing setup. This form lets the user to select press from the list of all

presses

Press Setup Zl |E El

Pres= Setup hformation

Prazs IDv Jab ID a)

Frems 1 127666 Feal 1 | Reel 2 | Reel 3 | Reel 4
WWid b 1500 Manufactu rer Code ! 1500
Diarnater: Boasis I eight ! 200
Type: Roll Type s Ship Mo

Siyztern Status AT
Confidential © SolovatSoft, 2007 Page

54

ProductName. Software Design Document

Ver: 2.1.5

Press Status Form

The Press Status form is used at the end of the press run to enter roll diameter for each roll on the reel.
This form lets the user to select press from the list of all presses.

Press Status E”E E|

Prezs IDv Jab IC Status #| — Rolls Staus
Press 1 127EEE2 127EEE2
Feel 1 | Real 2 || Reel 2 | Reeld
Rol | Mumber: 23223
Ciarneter! <0
Type: Roll Type
o
Systern Status AT
Confidential © SolovatSoft, 2007

Page

55

ProductName. Software Design Document

Ver: 2.1.5

Press Status Dialog

The Press Status Dialog is used at the end of the press run to enter roll diameter for each roll on the reel.

Prezs Ln Press 1

Job I 199287 Sratus: Finished
Reel 1 | Reel 2 || Reel3 | Reeld
Foll Marnb er: 23223
Ciarneater: 400
Type: Roll Type
| Remove Rolls | | Claze |

This form has only one field for enter data — “Diameter”. It’s a roll diameter after job finish. By

clicking on “Roll Number” form with roll info will be shown.

Confidential © SolovatSoft, 2007

Page

56

ProductName. Software Design Document Ver: 2.1.5

Event Logging

For logging system standard Windows event logging system will be used. Event logging in
Microsoft Windows provides a standard, centralized way for you to have your applications
record important software and hardware events. When an error occurs, the system administrator
or support technicians must determine what caused the error, attempt to recover any lost data,
and prevent the error from recurring. It is helpful if applications, the operating system, and other
system services record important events such as low-memory conditions or failed attempts to
access a disk. The system administrator can use the event log to help determine what conditions
caused the error and the context in which it occurred.

Windows supplies a standard user interface for viewing these event logs and a programming
interface for examining log entries.

An event, as defined in Windows, is any significant occurrence — whether in the operating
system or in an application — that requires users to be notified. Critical events are sent to the
user in the form of an immediate message on the screen. Other event notifications are written to
one of several event logs that record the information for future reference. Every event log entry is
classified into one of the following categories: errors, warnings, information, success audits, or
failure audits.

There are three event logs available by default:
e a System log, which tracks events that occur on system components (for example, a
problem with a driver);
e a Security log, which tracks security changes and possible breaches;
« an Application log, which tracks events that occur in a registered application.

We can create your own custom logs using the language features in the System.Diagnostics
namespace. And this log will be used for logging the SYSTEM.

Confidential © SolovatSoft, 2007 Page 57

